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Translator’s Foreword

Those reading these lines are
hereby summoned to raise their
children to a good command of
Elementary Geometry, to be judged
by the rigorous standards of the
gncient Greek mathematicians.

A magic spell

Mathematics is an ancient culture. It is passed on by each generation to
the next. What we now call Elementary Geometry was created by Greeks
some 2300 years ago and nurtured by them with pride for about a millen-
nium. Then, for another millennium, Arabs were preserving Geometry and
transcribing it to the language of Algebra that they invented. The effort
bore fruit in the Modern Age, when exact sciences emerged through the
work of Frenchman Rene Descartes, Englishman Isaac Newton, German
Carl Friedrich Gauss, and their contemporaries and followers.

Here is one reason. On the decline of the 19th century, a Scottish pro-
fessor showed to his class that the mathematical equations, he introduced
to explain electricity experiments, admit wave-like solutions. Afterwards
a German engineer Heinrich Hertz, who happened to be a student in that
class, managed to generate and register the waves. A century later we find
that almost every thing we use: GPS, TV, cell-phones, computers, and
everything we manufacture, buy, or learn using them, descends from the
mathematical discovery made by James Clerk Maxwell.

I gave the above speech at a graduation ceremony at the University of
California Berkeley, addressing the class of graduating math majors — and
then I cast a spell upon them.

Soon there came the realization that without a Magic Wand the spell
won’t work: I did not manage to find any textbook in English that I could
recommend to a young person willing to master Elementary Geometry.
This is when the thought of Kiselev’s came to mind.

Andrei Petrovich Kiselev (pronounced And-'rei Pet-"ro-vich Ki-se-'lyov)
left & whique legacy to mathematics education. Born in 1852 in a provin-
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cial Russian town Mzensk, he graduated in 1875 from the Department of
Mathematics and Physics of St.-Petersburg University to begin a long ca-
reer as a math and science teacher and author. His school-level textbooks
“A Systematic Course of Arithmetic” ! [9], “Elementary Algebra” [10], and
“Elementary Geometry” (Book I “Planimetry”, Book II “Stereometry”) [3]
were first published in 1884, 18%8 and 1892 respectively, and soon gained
a leading position in the Russian mathematics education. Revised and
published more than & hundred times altogether, the books retained their
leadership over many decades both in Tsarist Russia, and after the Revolu-
tion of 1917, under the quite different cultural circumstances of the Soviet
epoch. A few years prior to Kiselev’s death in 1940, his books were officially
given the status of stable, i.e. main and only textbooks to be used in all
schools to teach all teenagers in the totalitarian state with a 200-million
population. The books held this status until 1955 (and “Stereometry” even
until 1974) when they got replaced in this capacity by less successful clones
written by more Soviet authors. Yet “Planimetry” remained the favorite
under-the-desk choice of many teachers and a must for honors geometry stu-
dents. In the last decade, Kiselev’s “Geometry,” which has long become a
rarity, was reprinted by several major publishing houses in Moscow and St.-
Petersburg in both versions: for teachers [6, 8] as an authentic pedagogical
heritage, and for students [5, 7] as a textbook tailored to fit the currently
active school curricula. In the post-Soviet educational market, Kiselev’s
“Geometry” continues to compete successfully with its own grandchildren.

What is the secret of such ageless vigor? There are several.

Kisgelev himself formulated the following three key virtues of good text-
books: precision, simplicity, conciseness. And competence in the subject —
for we must, now add this fourth criterion, which could have been taken for
granted a century ago.

Acquaintance with programs and principles of math education being
developed by European mathematicians was another of Kiselev’s assets. In
his preface to the first edition of “Elementary Geometry,” in addition to
domestic and translated textbooks, Kiselev quotes ten geometry courses in
French and German published in the previous decade.

Yet another vital elixiv that prelongs the life of Kiselev’s work was the
continuous effort of the author himself and of the editors of later reprints fo
improve and update the books, and to accommodate the teachers’ requests,
curriculum fluctuations and pressures of the 20th century classroom.

Last but not least, deep and beautiful geometry is the most efficient
preservative. Compared to the first textbook in this subject: the “Ele-
ments” [1], which was written by Buclid of Alezandria in the 3rd century
B.C., and whose spirit and structure are so faithfully represented in Kise-
lev’s “Geometry,” the latter is quite young.

Elementary geometry occupies a singular place in secondary education,
The acquiring of superb reasoning skills is one of those benefits from study-

1The numbers in brackets refer to the bibliography on p. 235.
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ing geometry whose role reaches far beyond mathematics education per se.
Another one is the unlimited opportunity for nurturing creative thinking
(thanks to the astonishingly broad difficulty range of elementary geome-
try problems that have been accumulated over the decades). Fine learning
habits of those who dared to face the challenge remain always at work for
them. A lack thereof in those who missed it becomes hard to compensate by
studying anything else. Above all, elementary geometry conveys the esgence
and power of the theoretical method in its purest, yet intuitively transparent
and aesthetically appealing, form. Such high expectations seem to depend
however on the appropriate framework: a textbocok, a teacher, a culture.

In Russia, the adequate framework emerged apparently in the mid-
thirties, with Kiselev’s books as the key component. After the 2nd World
War, countries of Fastern Europe and the Peoples Republic of China,
adapted to their classrooms math textbooks based on Soviet programs.
Thus, one way or another, Kiselev's “Geometry” has served several gener-
ations of students and teachers in a substantial portion of the planet. It is
the time to make the book available to the English reader.

“Planimetry,” targeting the age group of current 7-9th-graders, pro-
vides a concise yet crystal-clear presentation of elementary plane geome-
try, in all its aspects which usually appear in modern high-school geome-
try programs. The reader’s mathematical maturity is gently advanced by
commentaries on the nature of mathematical reagoning distributed wisely
throughout the book. Student’s competence is reinforced by generously
supplied exercises of varying degree of challenge. Among them, straight-
edge and compass constructions play a prominent role, because, according
to the author, they are essential for animating the subject and cultivating
students’ taste. The book is marked with the general sense of measure (in
both selections and omissions), and non-cryptic, unambiguous language.
This makes it equally suitable for independent study, teachers’ professional
development, or a regular school classroom. The book was indeed designed
and tuned to be stable.

Hopefully the present adaptation retains the virtues of the original. I
tried to follow it pretty closely, alternating between several available ver-
sions (3, 4, 5, 7, 8] when they disagreed. Yet authenticity of translation
was not the goal, and I felt free to deviate from the source when the need
oceurred.

The most notable change is the significant extension and rearrangement
of exercise sections to comply with the US tradition of making textbook
editions self-contained (in Russia separate problem books are in fashion).

Also, I added or redesigned a few sections to represent material which
found its way to geometry curricula rather recently.

Finally, having removed descriptions of several obsolete drafting devices
(such as a pantoagraph), [ would like to share with the reader the following
observation.

In that remote, Kiselevian past, when Elementm*y- Gepmetry was the
most reliable ally of every engineer, the straightedge and compass were the
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main items in his or her drafting toolbox. The craft of blueprint draft-
ing has long gone thanks to the advance of computers. Consequently, all
267 diagrams in the present edition are produced with the aid of graphing
software Xfig. Still, Elementary Geometry is manifested in their design in
multiple ways. Obviously, it is inherent in all modern technologies through
the “custody chain”: Euclid — Descartes — Newton — Maxwell. Plausibly, it
awakened the innovative powers of the many scientists and enginsers who
invented and created computers. Possibly, it was among the skills of the
authors of Xfig. Yet, symbolically enough, the most reliable way of draw-
ing a diagram on the computer screen is to use electronic surrogates of the
straightedge and compass and follow literally the prescriptions given in the
present book, often in the very same theorem that the diagram illustrates.
This brings us back to Euclid of Alexandria, who was the first to describe

the theorem, and to the task of passing on hés culture. '

I believe that the book you are holding in your hands gives everyone a

* fair chance to share in the “custody.” This is my Magic Wand, and now I

can cast my spell.

Alexander Givental
Department of Mathematics
University of California Berkeley
April, 2006
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Introduction

1. Geometric figures. The part of space occupied by a physical
object is called a geometric solid.

A geometric golid is separated from the surrounding space by a
surface.

A part of the surface is separated from an adjacent part by a
line.

A part of the line is separated from an adjacent part by a point.

The geometric solid, surface, line and point do not exist sepa-
rately. However by way of abstraction we can consider a swface
independently of the geometric solid, a line — independently of the
surface, and the point — independently of the line. In doing so we
should think of & surface as having no thickness, a line — as having
neither thickness nor width, and a point — as having no length, no
width, and no thickness.

A set of points, lines, surfaces, or solids positioned in a certain
way in space is generally called a geometric figure. Geometric fig-
ures can move through space without change. Two geometric figures
are called congruent, if by moving one of the figures it is possi-
ble to superimpose it onto the other so that the two figures become
identified with each other in all their parts.

2. Geometry. A theory studying properties of geometric figures
is called geometry, which translates from Greek as land-measuring.
This name was given to the theory because the main purpose of
geometry in antiquity was to measure distances and areas on the
Earth’s surface.

First concepts of geometry as well ag their basic properties, are
introduced as idealizations of the corresponding common notions and
everyday experiences.

3. The plane. The most familiar of all surfaces is the flat sur-
face, or the plane. The idea of the plane is conveyed by a window

1



2 _ Introduction

pane, or the water surface in a quiet pond.

We note the following property of the plane: One can superimpose
a plane on itself or any other plane in a way that takes one given
point to any other given point, and this can also be done after flipping
the plane upside down.

4. The straight line. The most simple line is the straight
line. The image of & thin thread stretched tight or a ray of light
emitted through a small hole give an idea of what a straight live is.
The following fundamental property of the straight line agrees well
with these images:

For every two points in spuce, there is a straight line passing
through them, and such o line is unique.
It follows from this property that:

If two straight lines are aligned with eqch other in such g way that
two points of one line coincide with two points of the other, then the
lines coincide in all their other points as well (because otherwise we
would have two distinet straight lines passing through the same two
points, which is impossible}.

For the same reason, fwo straight lines can intersect at most at
one point.

A straight line can lie in a plane. The following holds true:

If o straight line passes through two points of a plane, then aoll
points of this line lie in this plane.

A o B C b D E
5 : —_— ¥
Figure 1 Figure 2 Figure 3

5. The unbounded straight line. Ray. Segment. Thinking
of a straight line as extended indefinitely in both directions, one calls
it an infinite (or unbounded) straight line.

A straight line {g usually denoted by two uppercase letters mark-
ing any two points on it. One says “the line AB” or “BA” (Figure
1). '

A part of the straight line bounded on both sides is called a
straight segment. Tt is usually denoted by two letters marking its
endpoints (the segment CD, Figure 2). Sometimes a straight line

‘or a segment is denoted by one (lowercase) letter; one may say “the
straight line a, the segment b.”
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Usually instead of “unbounded straight line” and “straight seg-

2%

ment” we will simply say line and segment respectively.

Sometimes g straight line is considered which terminates in one
direction only, for instance at the endpoint F (Figure 3). Such a
straight line is called a ray (or half-line) drawn from FE.

6. Congruent and non-congruent segments. Two segments
are congruent if they can be laid one onto the other so that their
endpoints coincide. Suppose for example that we put the segment
AB onto the segment CD (Figure 4) by placing the point A at the
point C and aligning the ray AB with the ray CD. If, as a result
of this, the points B and D merge, then the segments AB and ¢'D
are congruent. Otherwise they are not congruent, and the one which
makes a part of the other is considered smaller,

A B C D

Figure 4

To mark on a line a segment congruent to a given segment, one
uses the compass, a drafting device which we assume familiar to the
reader.

7. Sum of segments. The sum of several given segrnents (AB,
CD, EF, Figure 5) is a segment which is obtained as follows. On
a line, pick any point M and starting from it mark a segment MN
congruent to AB, then mark the segments NP congruent to C'D,
and PQ congruent to EFF, both going in the same direction as MN.
Then the segment M@ will be the surn of the segments AB, CD and
EF (which are called summands of this sum}. One can similarly
obtain the sum of any number of segments.

A B C B E F

M N P Q

Figure 5

The sum of segments has the same properties as the sum of num-
bers. In particular it does not depend on the order of the summands
(the commutativity law) and remains unchanged when some of the
summands are replaced with their sum (the associativity law). For
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instance:
AB+CD 4+ EF =AB+EF 4+ CD=FF+CD+AB=...
and

AB+CD+EF=AB+(CD+EF)=CD+{AB+EF)=....

8. Operations with segments. The concept of addition of
segments gives rise to the concept of subtraction of segments, and
multiplication and division of segments by a whole number. For
example, the difference of AB and CD (if AB > CD) is a segment
whose sum with CD is congruent to AB; the product of the segment
AB with the number 3 is the sum of three segments each congruent
to AB; the quotient of the segment AB by the number 3 is a third
part of AB.

If given segments are measured by certain linear units (for in-
stance, centimeters), and their lengths are expressed by the corre-
sponding numbers, then the length of the sum of the segments is
expressed by the sum of the;numbers measuring these segments, the
length of the difference is expressed by the difference of the numbers,
atc.

9. The circle. If, setting the compass to an arbitrary step and,
placing its pin leg at some point O of the plane (Figure 6), we begin to
turn the compass around this point, then the other leg equipped with
a pencil touching the plane will describe on the plane a continuous
curved line all of whose points are the same distance away from O.
This curved line is called a circle, and the point O — its center.
A gegment (OA, OB, OC in Figure 6) connecting the center with a
point of the circle is called a radius. All radii of the same circle are
congruent to sach other.

Circles described by the compass set to the same radius are con-
gruent because by placing their centers at the same point one will
identify such circles with each other at all their points.

A line (M N, Figure 6} intersecting the circle at any two points
is called a secant.

A segment (E'F) both of whose endpoints lie on the circle is called
a chord.

A chord (AD) passing through she center is called a diameter.
A diameter is the sum of two radii, and.therefore all diameters of the
same circle are congruent to each other.

A part of a circle contained between any two points (for example,
EmF) is called an arc.
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The chord connecting the endpoints of an arc is said to subtend
this arc.
An arc is sometimes denoted by the sign 7 ; for instance, one

TN

writes: EmF.
The part of the plane bounded by a circle is called a disk.?

The part of a disk contained between two radii (the shaded part
COB in Figure 6) is called a sector, and the part of the disk cut off
by a secant (the part Em[") is called a disk segment.

10. Congruent and non-congruent arcs. Two arcs of the
same circle (or of two congruent circles) are congruent if they can
be aligned so that their endpoints coincide. Indeed, suppose that
we align the arc AB (Figure 7) with the arc CD by identifying the
point A with the point C and directing the arc AB along the arc
CD. If, as a result of this, the endpoints B and D coincide, then all

the intermediate points of these arcs will coincide as well, since they
Eat TN

are the same distance away from the center, and therefore AB=CD.
But if B and D do not coincide, then the arcs are not congruent, and
the one which is a part of the other is considered smaller.

11. Sum of arcs. The gsum of several given arcs of the same
radius is defined as an arc of that same radius which is composed
from parts congruent respectively to the given arcs. Thus, pick an
arbitrary point M (Figure 7} of the cixcle and mark the part MN

20ften the word “circle” is used instead of “disk.” However one should aveid
doing this since the use of the same term for different concepts may lead to
mistakes.
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congruent to AB. Next, moving in the same direction along the
circle, mark the part NP congruent to C'D. Then the arc M P will
be the sum of the arcs AB and CD.

N
M

Figure 7

Adding arcs of the same’adius one may encounter the situation
when the sum of the arcs does not fit in the circle and one of the arcs
partially covers another. In this case the sum will be an arc greater
than the whole circle. For example, adding the arcs AmB and CnD
(Figure 8) we obtain the arc consisting of the whole circle and the
arc AD. '

A B n c A BC
D D
Iig) n
Figure 8

-Similarly to addition of line segments, addition of arcs obeys the
commutativity and associativity laws.

From the concept of addition of arcs one derives the concepts
of subtraction of arcs, and multiplication and division of arcs by a..
whole number the same way as it was done for line segments.

12. Divisions of geometry. The subject of geometry can be
divided into two parts: plane geometry, or planimetry, and solid
geometry, or stereometry. Planimetry studies properties of those
geometric figures all of whose elements fit the-same plane.
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EXERCISES

1. Give examples of geometric solids bounded by one, two, three,
four planes (or parts of planes).

2. Show that if a geometric figure is congruent to another geometric
figure, which is in its turn congruent to a third geometric figure, then
the first geometric figure is congruent to the third.

3. Explain why two straight lines in space can intersect at most at
one point.

4. Referring to §4, show that a plane not containing a given straight
line can intersect it at most &t one point.

5.* 3 Cive an example of a surface other than the plane which, like
the plane, can be superimposed on itself in a way that takes any one
given point to any other given point.

Remark: The required example is not unique.

6. Referring to §4, show that for any two points of a plane, there is a
straight line lying in this plane and passing through them, and that
such a line is unique.

7. Use a straightedge to draw a line passing through two points given

" on o sheet of paper. Figure out how to check that the line is really

straight.
Hint: Flip the straightedge upside down.

8.* Fold a sheet of paper and, using the previcus problem, check that
the edge is straight. Can you explain why the edge of a folded paper
is gtraight? -

Remark: There may exist several correct answers to this question.
9. Show that for each point lying in a plane there is a straight line
lving in this plane and passing through this point. How many such
lines are there?

10. Find surfaces other than the plane which, like the plane, together
with each point lying on the surface contain a straight line passing
through this point.

Hint: One can obtain such surfaces by bending a sheet of paper.
11. Referring to the definition of congruent figures given in §1, show

that any two infinite straight lines are congruent; that any two rays
are congruent.

12. On & given line, mark a segment congruent to four $imes a given
segment, using a compass as few times as possible.

3Qtars * mark those exercises which we consider more difficult.



8 Introduction

13. Is the sum (difference) of given segments unique? Give an ex-
ample of two distinct segments which both are sums of the given
segrments. Show that these distinct segments are congruent.

14. Give an example of two non-congruent arcs whose endpoints co-
incide. Can such arcs belong to non-congruent circles? to congruent
circles? to the same circle?

15. Give examples of non-congruent arcs subtended by congruent
chords. Are there non-congruent chords subtending congruent arcs?

16. Describe explicitly the operations of subtraction of arcs, and
multiplication and division of an arc by a whole number.

17. Follow the descriptions of operations with arcs, and show that
multiplying a given arc by 3 and then dividing the result by 2, we
obtain an yre congruent to the arc resulting from the same operations
performed on the given arc in the reverse order.

18. Can sums (differences) of respectively congruent line segments, -
or arcs, be non-congruent? Can sums (differences) of respectively
non-congruent segments, or arcs be congruent?

19. Following the definition of sum of segments or arcs, explain why

addition of segments (or arcs) obeys the commutativity law.
Hint: Identify a segment (or arc) AB with BA.
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Chapter 1

THE STRAIGHT LINE

1 Angles

13. Preliminary concepts. A figure formed by two rays drawn
from the same point is called an angle. The rays which form the
angle are called its sides, and their common endpoint is called the

vertex of the angle. One should think of the sides as extending away |

from the vertex indefinitely.

Figure 9 Figure 10

An angle is usually denoted by three uppercase letters of which
the middle one marks the vertex, and the other two label a point on
each of the sides. One says, e.g.: “the angle AOB” or “the angle
BOA” (Figure 9). It is possible to denote an angle by one letter
marking the vertex provided that no other angles with the same
vertex are present on the diagram. Sometimes we will also denote
an angle by a number placed inside the angle next to its vertex.

9



10 Chapter 1. THE STRAIGHT LINE

The sides of an angle divide the whole plane containing the angle
into two regions. One of them is called the interior region of the
angle, and the other is called the exterior one. Usually the interior
region is congidered the one that contains the segmenis joining any
two points on the sides of the angle, e.g. the points A and B on the
sides of the angle AOB (Figure 9). Sometimes however one needs
to consider the other part of the plane as the interior one. In such
cases a special comment will be made regarding which region of the
plane is considered interior. Both cases are represented separately in
Figure 10, where the interior region in each case is shaded.

Rays drawn from the vertex of an angle and lying in its interior
(OD, QFE, Figure 9) form new angles {AOD, DOE, EOB) which
are considered to be parts of the angle (AQB).

In writing, the word “angle” is often replaced with the symbol Z.
For instance, instead of “angle AOB” one may write: LAOB.

14. Congruent and non-congruent angles. In accordance
with the general definition of congruent figures (§1) two angles are
considered congruent if by m?'z)i?zg one of them it is possible to identify
it with the other.

Figure 11

Suppose, for example, that we lay the angle AGB onto the angle
A'O'B’ (Figure 11) in a way such that the vertex O coincides with O,
the side OB goes along OB/, and the interior regions of both angles
lie on the same side of the line O'B’. If O A turns out to coincide with
- O' A, then the angles are congruent. If A turns out to lie inside or
outside the angle A'O’B’, then the angles are non-congruent, and the
one, that lies inside the other is said to be smaller.

15. Sum of angles. The sum of angles ACGB and A'O'B’ (Fig-
ure 12) is an angle defined as follows. Construct an angle MNP
congruent to the given angle AOB, and attach to it the angle PNQ,
congruent to the given angle A’C’'B’, as shown. Namely, the angle



1. Angles 11

M N P should have with the angle PN(Q the same vertex N, a com-
mon side NP, and the interior regions of both angles should lie on
the opposite sides of the common ray NP. Then the angle MNQ is
called the sum of the angles AOB and A'O’B’. The interior region
of the sum is considered the part of the plane comprised by the inte-
rior regions of the summands. This region contains the common side
(NP) of the summands. One can similarly form the sum of three
and more angles.

B
(3]
O A
P
B,
?i//»/’XTJ/”!’::‘ N M

Figure 12

Addition of angles obeys the commutativity and associativity
laws just the same way addition of segments does. From the con-
cept of addition of angles one derives the concept of subtraction of
angles, and multiplication and division of angles by a whole number.

Figurs 13 Figure 14 Figure 15

Very often one has to deal with the ray which divides a given
angle into halves; this ray is called the bisector of the angle (Figure
13). '

16. Extension of the concept of angle. When one computes
the sum of angles some cases may occur which require special atten-
tlom.

(1) Tt is possible that after addition of several angles, say, the
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three angles: AOB, BOC and COD (Figure 14), the side QD of the
angle COD will happen to be the continuation of the side OA of the
angle AOB. We will obtain therefore the figure formed by two half-
lines (OA and OD) drawn from the same point (O) and continuing
each other. Such a figure is also considered an angle and is called a
straight angle.

(2) Tt is possible that after the addition of several angles, say, the
five angles: AOB, BOC, COD, DOF and EQA (Figure 15} the side
OA of the angle FQA will happen to coincide with the side OA of
the angle AOB. The figure formed by such rays (together with the
whole plane surrounding the vertex 0) is also considered an angle
and is called & full angle.

(3) Finally, it is possible that added angles will not only fill in
the whole plane around the common vertex, but will even overlap
with each other, covering the plane around the common vertex for
the second time, for the third time, and so on. Such an angle sum is
congruent to one full angle added with another angle, or congruent

to two full angles added with another angle, and se on.
3

A B

A B D

Figure 16 Figure 17

17. Central angle. The angle (AO B, Figure 16) formed by two
radii of a eircle is called & central angle; such an angle and the arc
contained between the sides of this angle are said to correspond to
each other.

Central angles and their corresponding arcs have the following
properties. '
In one circle, or two congruent circles:

(1) If central angles are congruent, then the correspond-
ing arcs are congruent;

(2) Vice versa, if the arcs are congruent, then the corre-
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sponding central angles are congruent.

Let ZAOB = ZCOD (Figure 17); we need to show that the arcs
AB and CD are congruent too. Imagine that the sector AOB is
rotated about the center O in the direction shown by the arrow until
the radius O A coincides with OC. Then due to the congruence of
the angles, the radius OB will coincide with OD; therefore the arcs
AB and CD will coincide too, i.e. they are congruent.

The second property is established similarly.

18. Circular and angular degrees. Imagine that a circle is
divided into 360 congruent parts and all the division points are con-
nected with the center by radii. Then around the center, 360 central
angles ars formed which are congruent to each other as central angles
corresponding to congruent arcs. Each of these arcs is called a cir-
cular degree, and each of those central angles is called an angular
degree. Thus one can say that a circular degree is 1/360th part of
the circle, and the angular degree is the central angle corresponding
to it.

The degrees (both circular and angular} are further subdivided
into 60 congrusnt parts called minutes, and the minutes are further
subdivided into 60 congruent parts called seconds.

A

D

Figure 18 Figure 19

19. Correspondence between central angles and arcs. Let
AQB be some angle (Figure 18). Between its sides, draw an arc CD
of arbitrary radiug with the center at the vertex O. Then the angle
AQOB will hecome the central angle corresponding to the arc OD.
Suppose, for example, that this arc consists of 7 eircular degrees
(shown enlarged in Figure 18). Then the radii connecting the divi-
sion points with the center obviously divide the angle AOB into 7
angular degrees. More generally, one can say that an angle is mea-
sured by the arc corresponding to i, meaning that an angle contains

as many-angular degrees, minutes and seconds as the corresponding
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arc contains circular degrees, minutes and seconds. For instance, if
the arc CD contains 20 degrees 10 minutes and 15 seconds of cir-
cular units, then the angle AOB consists of 20 degrees 10 minutes
and 15 seconds of angular units, which is customary to sxpress as:
LAOB = 20°10'15" using the symbols °, ' and ” to dencte degrees,
minutes and seconds respectively.

Units of angular degree do not depend on the radius of the circle.
Indeed, adding 360G angular degrees following the summation rule
described in §15, we obtain the full angle at the center of the circle.
Whatever the radius of the circls, this full angle will be the same.
Thus one can say that an angular degree is 1/360th part of the full
angle. :

20. Protractor. This device (Figure 19) is used for measuring
angles. It consists of a semi-disk whose arc is divided into 180°. To
measure the angle DCE, one places the protractor onto the angle
in & way such that the center of the semi-disk coincides with the
vertex of the angle, and the radins C'B lies on the side CE. Then
the number of degrees in the arc contained between the sides of the
angle DCE shows the medsure of the angle. Using the protractor
one can also draw an angle containing a given number of degrees (e.g.
the angle of 90°, 45°, 30°, etc.).

EXERCISES

20. Draw any angle and, using a protractor and a straightedge, draw
its bisector.

21. In the exterior of a given angle, draw another angle congruent
to it. Can you do this in the interior of the given angle?

22. How many common sides can two distinct angles have?

. 28. Can two non-congruent angles contain 55 angular degrees each?

24. Can two non-congruent arcs contain 55 circular degrees each?
What if these arcs have the same radius?

25. Two straight lines intersect at an angle cz}ntainizzg 25°. Find the .
measures of the ramaining three angles formed by these lines.

26. Three lines passing through the same point divide the plane
into six angles. Two of them turned out to contain 25° and 55°
respectively. Find the measures of the remaining four angles.

“27. Using only compass, construct a 1° arc on a circle, if a 19° arc

of this circle is given.
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2 Perpemdicular lines

21. Right, acute and obtuse angles. An angle of 90° (con-
gruent therefore to one half of the straight angle or to one quarter
of the full angle) is called a right angle. An angle smaller than the
right one is called acute, and a greater than right but smaller than
straight is called obtuse (Figure 20).

90°

right acute obtuse

Figure 20

All right angles are, of course, congruent to each other since they
contain the same number of degrees.

The measure of a right angle is sometimes denoted by d (the
initial letter of the French word droit meaning “right”).

22. Supplementary angles. Two angles (AOB and BOC, Fig-
ure 21) are called supplementary if they have one common side,
and their remaining two sides form continuations of each other. Since
the sum of such angles is a straight angle, the sum of {wo supplemen-
tary angles is 180° (in other words it is congruent to the sum of two
right angles). '

Figure 21 Figure 22

For each angle one can construct two supplementary angles. For
example, for the angle AOB (Figure 22), prolonging the side AQO we
obtain one supplementary angle BOC, and prolonging the side BO
we obtain another supplementary angle AQD. Two angles supple-
mentary to the same one are congruent to each other, since they both
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contain the same number of degress, namely the number that sup-
plements the number of degrees in the angle AOB to 180° contained
in a straight angle.

If AOB is a right angle (Figure 23), i.e. if it containg 90°, then
each of its supplementary angles COB and AOD must also be right,
since it contains 180° — 90°, i.e. 90°. The fourth angle COD has to
be right as well, since the three angles AOB, BOC and AQD contain
270° altogether, and therefore what is left from 360° for the fourth
angle COD is 90° too. Thus, if one of the four angles formed by two

" intersecting lines (AC and BD, Figure 23) is right, then the other

three angles must be right as well.

23. A perpendicular and a slant. In the case when two
supplementary angles are not congruent to each other, their common
side (OB, Figure 24) is called a slant ! to the line (AC) containing
the other two sides. When, however, the supplementary angles are
congruent (Figure 25) and when, therefore, each of the angles is right,
the common side is called a perpendicular to the line containing
the other two sides. The common vertex (O) is called the foot of
the slant in the first case, and the foot of the perpendicular in
the second.

B

o .
o0 | 90° A o) C A e c

D

Figure 23 Figure 24 Figure 25

Two lines (AC and BD, Figure 23) intersecting at a right angle
are called perpendicular to each other. The fact that the line AC
is perpendicular to the line BD is written: AC 1 BD.

Remarks. (1) If a perpendicular to a line AC' {(Figure 25) needs to .
be drawn through a point O lying on this line, then the perpendicular
is said to be “erected” to the line AC, and if the perpendicular.
needs to be drawn through a point B lying outside the line, then the
perpendicular is said to be “dropped” to the line (no matter if it is
upward, downward or sideways).

! Another name used for a slant is an oblique line.
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(2) Obviously, at any given point of a given line, on either side of
it, one can erect a perpendicular, and such a perpendicular is unique.

24. Let us prove that from any point lying outside a given
line one can drop a perpendicular to this line, and such
perpendicular is unigque.

Let a line AB (Figure 26) and an arbitrary point M outside the
line be given. We need to show that, first, one can drop a perpendic-
ular from this point to AB, and second, that there is only one such
perpendicular.

Imagine that the diagram is folded so that the upper part of it
iz identified with the lower part. Then the point M will take some
position N. Mark this position, unfold the diagram to the initial form
and then connect the points M and N by a line. Let us show now that
the resulting line M N is perpendicular to AB, and that any other
line passing through M, for example MD, is not perpendicular to
AB. For this, fold the diagram again. Then the point M will merge
with N agpin, and the points ¢ and D will remain in their places.
Therefore the line MC will be identified with NC, and MD with
ND. It follows that ZMCB = /BCN and LZMDC = ZCDN.

But the angles M CB and BCN are supplementary. Therefore
each of them is right, and hence MN 1 AB. Since M DN is not a
straight line (because there can be no two straight lines connecting
the points M and N), then the sum of the two congruent angles
MDC and ¢/DN is not equal to 2d. Therefore the angle M DL/ is
not, right, and hence M D is not perpendicular to AB. Thus one can
drop no other perpendicular from the point M to the line AB.

Figure 26 Figure 27

25. The drafting triangle. For practical construction of a per-
pendicular to a given line it is convenient to use a drafting triangle
made to have one of its angles right. To draw the perpendicular to a
line AB {Figure 27) through a point ' lying on this line, or through
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a point D taken outside of this line, one can align a straightedge
with the line AB, the drafting triangle with the straightedge, and
then slide the triangle along the straightedge until the other side of
the right angle hits the point C or D, and then draw the line CE.
26. Vertical angles. Two angles are called vertical if the sides
of one of them form continuations of the sides of the other. For
instance, at the intersection of two lines AB and CD (Figure 28)

. two pairs of vertical angles are formed: AOD and COB, AOC and

DOB (and four pairs of supplementary angles).

Two vertical angles are congruent to each other (for ex-
ample, ZAOD = £ZBOC) since each of them is supplementary to the
same angle (to ZDOB or to LAOC), and such angles, as we have
seen (§22), are congruent to each other.

A D
c 2
]
o
2
A E
o

c B
Figure 28 Figure 29 Figure 30

27. Angles that have a common vertex. It is useful to re-
member the following simple facts about angles that have a common
Veriex:

(1) If the sum of several angles (AOB, BOC, COD, DOE, Figure
29) that have a common vertex is congruent to a straight a,ngle, then
the sum iz 2d, i.e. 180°.

(2) If the sum of several angles (AQB, BOC, COD, DOE, EQA,
Figure 30) that have a common vertex is congruent to the full angle,
then it is 4d, i.e. 360°.

(3) If two angles (AOB and BOC, Figure 24) have o common
vertex (O) and a common side (OB} and add up to 2d (i.e. 180°),
then their two other sides (AQ and OQC} form continuations of each
other (i.e. such angles are supplementary).

EXERCISES

28. Ts the sum of the angles 14°24'44” and 75°35'25” acute or obtuse?
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29. Five rays drawn from the same point divide the full angle into
five congruent parts. How many different angles do these five rays
form? Which of these angleés are congruent to each other? Which of
them are acute? Obtuse? Find the degree measure of each of them.

30. Can both angles, whose sum is the straight angle, be acute?
obtuse?

91. Pind the smallest number of acute (or obtuse) angles which add
up to the full angle.

22, An angle measures 38°20’; find the measure of its supplementary
angles.

39. One of the angles formed by two intersecting lines is 2d/5. Find
the measures of the other three.

24. Find the measure of an angle which is congruent to twice its
supplementary one.

35. Two angles ABC and CBD havmg the common vertex B and
the common side BC are positioned in such a way that they do
not cover one another. The angle ABC = 100°20/, and the angle
CBD = 79°40. Do the sides AB and BD form a straight line or a
bent one?

96. Two distinct rays, perpendicular to a given line, are erected at
a given point. Find the measure of the angle between these rays.

37. In the interior of an obtuse angle, two perpendiculars to its sides
are erected at the vertex. Find the measure of the obtuse angle, if
the angle between the perpendiculars-is 4d/5.

Prove:

38. Bisectors of two supplementary angles are perpendicular to sach
other.

39. Bisectors of two vertical angles are continuations of each other.

40. If at a point O of the line AB (Figure 28) two congruent angles
AOD and BOC are built on the opposites sides of AB, then their
sides OD and OC form a straight line.

41. If from the point O (Figure 28) rays OA, OB, OC and OD
are constructed in such a way that ZAOC = ZDOB and ZAQD =
ZCOB, then OB is the continuation of OA, and OD is the contin-
uation of OC.

Hint: Apply §27, statements 2 and 3.
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3 Mathematical propositions

28. Theorems, axioms, definitions. From what we have said
so far one can conclude that some geometric statements we consider
quite obvious (for example, the properties of planes and lines in §3
and §4) while some others are established by way of reasoning (for
example, the properties of supplementary angles in §22 and vertical
angles in §26). In geometry, this process of reasoning is a principal
way to discover properties of geometric figures. It would be instruc-
tive therefore to acquaint yourself with the forms of reasoning usual
in geometry. '

All facts established in geometry are expressed in the form of
propositions. These propositions are divided into the following types.

Definitions. Definitions are propositions which explain what
meaning one attributes to a name or expression.- For instance, we
have already encountered the definitions of central angle, right angle,
perpendicular lines, ete.

Axioms. Axioms 2 arg those facts which are accepted without
proof. This includes, for example, some propositions we encountered
earlier (§4): through any two points there is a unique line; if two
points of a line lie in a given plane then all points of this line lie in
the same plane.

Let us also mention the following axioms which apply to any kind
of quantities:

if each of two quantities is equal to a third quantity, then these
two quantities are equal to each other;

if the same quantity is added to or subtracted from equal guan-
tities, then the equality remains true;

if the same guantity is added te or subtracted from zmequa.l quan-
tities, then the inequality remains unchanged, i.e. the grealer quan-
tity remains greater.

Theorems. Theorems are those propositions whose truth is
found only through a certain reasoning process (proof). The fol-
lowing propositions may serve as examples:

if in one circle or two congruent circles some central angles are
congruent, then the corresponding arcs are congruent;

if one of the four angles formed by two intersecting lines turns
out to be right, then the remaining three angles are right as well.

2In geometry, some axioms are traditionally called postulates.
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Corollaries. Corollaries are those propositions which follow di-
rectly from an axiom or a theorem. For instance, it follows from the
axiom “there is only one line passing through two points” that “two
lines can intersect at one point at most.”

29. The content of a theorem. In any theorem one can distin-
guish two parts: the hypothesis and the conclusion. The hypothesis
expresses what is congidered given, the conclusion what is required
to prove. For example, in the theorem “if central angles are con-
gruent, then the corresponding arcs are congruent” the hypothesis
is the first part of the theorem: “if central angles are congruent,”
and the conclusion is the second part: “then the corresponding arcs
are congruent;” in other words, it is given (known to us) that the
central angles are congruent, and it is required to prove that under

this hypothesis the corresponding arcs are congruent.

The hypothesis and the conclusion of a theorem may sometimes
consist of several separate hypotheses and conclusions; for instance,
in the theorem “if a number is divisible by 2 and by 3, then it is
divisible by 6,” the hypothesis consists of two parts: “if a number is
divisible by 2” and “if the number is divisible by 3.”

It is useful to notice that any theorem can be rephrased in such
a way that the hypothesis will begin with the word “if,” and the
conclusion with the word “then.” For example, the theorem “vertical
angles are congruent” can be rephrased this way: “if two angles are
vertical, then they are congruent.”

30. The converse theorem. The theorem converse o a given
theorem is obtained by replacing the hypothesis of the given theorem
with the conclugion (or some part of-the conclusion), and the con-

_clusion with the hypothesis (or some part of the hypothesis) of the

given theorem. For instance, the following two theorems are converse
to each other:

If central angles are congru- If arcs are congruent, then
ent, then the corresponding arcs  the rorresponding central angles
are congruent. are congruent.

If we call one of these theorems direct, then the other one should
be called converse.

In this example both theorems, the direct and the converse one,
turn out to be true. This is not always the case. For example the
theorem: “if two angles are vertical, then they are congruent” is true,
but the converse statement: “if two angles are congruent, then they
are vertical” is false.
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Indeed, suppose that in some angle the bisector is drawn (Figure
13). It divides the angle into two smaller ones. These smaller angles
are congruent to each other, but they are not vertical.

EXERCISES

42. Formulate definitions of supplementary angles (§22) and vertical
angles (§26) using the notion of sides of an angle.

43. Find in the text the definitions of an angle, its vertex and sides,
in terms of the notion of a ray drawn from a point.

44" In Introduction, find the definitions of a ray and a straight seg-
ment in terms of the notions of a siraight line and a point. Are there
definitions of a point, line, plane, surface, geometric solid? Why?
Remark: These are examples of geometric notions which are consid-
ered undefinable.

45. Is the following proposition from §6 a definition, axiom or theo-
rem: “Two segments are congruent if they can be laid one onto the
other so that their endpoints coincide”?

46. In the text, find the deflnitions of a geometric figure, and congru-
ent geometric figures. Are there definitions of congruent segments,
congruent arcs, congruent angles? Why?

47. Defing a circle.

48. Formulate the proposition converse to the theorem: “If a number
is divisible by 2 and by 3, then it is divisible by 6.” Is the converse
proposition true? Why?

49. In the proposition from §10: “Two arcs of the same circle are
congruent if they can be aligned so that their endpoints coincide,”
separate the hypothesis from the conclusion, and state the converse
proposition. Is the converse proposition true? Why?

50. In the theorem: “Bisectors of supplementary angles are perpen-
dicular,” separate the hypothesis from the conclusion, and formulate
the converse-proposition. Is the converse proposition true?

51. Give an example that disproves the proposition: “If the bissctors
of two angles with a common vertex are perpendicular, then the
angles are supplementary.” Is the converse proposition true?

4 Polygons and triangles

31. Broken lines. Straight segments not lying on the same line
are said to form a broken line (Figures 31, 32) if the endpoint of the
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first segment is the beginning of the second one, the endpoint of the
second segment is the beginning of the third one, and so on. These
segments are called sides, and the vertices of the angles formed by
the adjacent segments vertices of the broken line. A broken line is
denoted by the row of letters labeling its vertices and endpoints; for
ingtance, one says: “the broken line ABCDE.”

A broken line is called convex if it lies on one side of each of
its segments continued indefinitely in both directions. For example,
the broken line shown in Figure 31 is convex while the one shown in
Figure 32 is not (it lies not on one side of the line BC).

Figure 31 Figure 32

A broken line whose endpoints coincide is called closed (e.g. the
lines ABCDE or ADCBE in Figure 33). A closed broken line may
have self-intersections. For instance, in Figure 33, the line ADC'BE
is self-intersecting, while ABCDFE is not.

c

t

Figure 33

32. Polygons. The figure formed by a non-self-intersecting
closed broken line together with the part of the plane bounded by
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this line is called a polygon (Figure 33). The sides and vertices
of this broken line are called respectively sides and vertices of
the polygon, and the angles formed by each two adjacent sides (in-
terior) angles of the polygon. More precisely, the interior of a
polygon’s angle is considered that side which contains the interior
part of the polygon in the vicinity of the vertex. For instance, the
angle at the vertex P of the polygon M NPQRS is the angle greater
than 2d (with the interior region shaded in Figure 33). The broken
line itself is called the boundary of the polygon, and the segment
congruent to the sum of all of its sides -— the perimeter. A half of
the perimeter is often referred to as the semiperimeter.

A polygon is called convex if it is bounded by a convex broken
line. For example, the polygon ABCDE shown in Figure 33 is convex
while the polygon A NPQRS is not. We will mainly consider convex
polygons.

Any segment (like AD, BE, MR, ..., Figure 33) which connects
two vertices not belonging to the same side of a polygon is called a
diagonal of the polygon.

The smallest number of sides in a polygon is three. Polygons are
named according to the number of their sides: triangles, quadri-
laterals, pentagons, hexagons, and so on.

The word “triangle” will often be replaced by the symbol A.

33. Types of triangles. Triangles are classified by relative
lengihs of their sides and by the magnitude of their angles. With
respect to the lengths of sides, triangles can be scalene (Figure 34)
— when all three sides have different lengths, isosceles (Figure 35)
— when two sides are congruent, and equilateral (Figure 36) —
when all three sides are congruent.

Figure 34 Figure 35 Figure 36

With respect to the magnitude of angles, triangles can be acute
(Figure 34) — when all three angles are acute, right (Figure 37) —
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when among the angles there is a right one, and obtuse (Figure 38)
— when among the angles there is an obtuse one. 3

Figure 37 Figure 38

In a right triangle, the sides of the right angle are called legs,
and the side opposite to the right angle the hypotenuse.

34. Important lines in a triangle. One of a triangle’s sides
is often referred to as the base, in which case the opposite vertex is
called the vertex of the triangle, and the other two sides are called
lateral. Then the perpendicular dropped from the vertex to the base
or to its centinuation is called an altitude. Thus, if in the triangle
ABC (Figure 39), the side AC is taken for the base, then B is the
vertex, and BD is the altitude.

B

Figure 39

The segment (BE, Figure 39) connecting the vertex of a triangle
with the midpoint of the base is called a median. The segment (BF)
dividing the angle at the vertex into halves is called a bisector of
the triangle (which generally Speaklng differs from both the median
and the altitude).

3We will see in §43 that a triangle may have at most one right or obtuse angle.
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Any triangle has three altitudes, three medians, and three bi-
sectors, since each side of the triangle can take on the role of the
base.

In an isosceles triangle, usually the side other than each of the
two congruent ones is called the base. Respectively, the vertex of an
isosceley triangle is the vertex of that angle which is formed by the
congruent sides.

EXFERCISES

52. Four points on the plane are vertices of three different quadri-
laterals. How can this happen?

53. Can a convex broken line self-intersect?

54. Is it possible to tile the entire plane by non-overlapping polygons
all of whose angles contain 140° each?

55. Prove that each diagonal of a quadrilateral either lies entirely in
its interior, or entirely in its exterior. Give an example of a pentagon
for which this is false. )

56. Prove that a closed convex broken line is the boundary of a

polygon.
57. Is an equilateral triangle considered isosceles? Is an isosceles
triangle considered scalene?

58.* How many intersection points can three straight lines have?

59. Prove that in a right triangle, three altitudes pass through a
commaon point.

60. Show that in any triangle, every two mediang intersect. Is the
same true for every two bisectors? altitudes?

61. Give an example of a triangle such that only one of its altitudes
lies in its imterior.

5 Isosceles triangles and symmetry

35. Theorems.

(1) In an isosceles triangle, the bisector of the angle at
the vertex 13 at the same time the median and the altitude.

(2) In an isosceles triangle, the angles at the base are
congruent.

Let AABC (Figure 40) be isosceles, and let the line BD be the
bisector of the angle B at the vertex of the triangle. It is required to
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prove that this bisector BD is also the median and the altitude.

Imagine that the diagram is folded along the line 2D so that
LABD falls onto ZCBI. Then, due to congruence of the angles 1
and 2, the side AB will fall onto the side C'B, and due to congruence
of these sides, the point A will merge with €. Therefore DA will
coincide with DC, the angle 3 will coincide with the angle 4, and the
angle 5 with 6. Therefore

DA=DC, /£3=/4, and /5= /6.

It follows from DA = DC that BD is the median. It follows from
the congruence of the angles 3 and 4 that these angles are right, and
hence BD is the altitude of the triangle. Finally, the angles 5 and 6
at the base of the triangle are congruent.

B

Figure 40

36. Corollary. We see that in the isosceles triangle ABC (Fig-
ure 40) the very same line B} possesses four properties: it is the
bisector drawn from the vertex, the median to the bage, the altitude
dropped from the vertex to the base, and finaily the perpendicular
erected from the base at its midpoint.

Since each of these properties determines the position of the line
BD unambiguously, then the validity of any of them implies all the
others. For example, the altitude dropped to the base of an isosceles
triangle is at the same time its bisector drawn from the vertez, the
median to the base, and the perpendicular erected atl its midpoint.

37. Axial symmetry. If two points (A and A/ Figure 41) are
situated on the opposite sides of a line @, on the same perpendicular
to this line, and the same distance away from the foot of the perpen-
dicular (i.e. if AF is congruent to F'A’), then such points are called
symmetric about the line a.
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Two figures (or two parts of the same figure) are called symmetric
about a line if for each point of one figure (A, B, C, D, E, ..., Figure
41} the point symmetric to it about this line ( A, B, ¢, D/, E/, ...)
belongs to the other figure, and vice versa. A figure is said to have
an axis of symmetry ¢ if this figure is symmetric to itself about
the line a, i.e. if for any point of the figure the symmetric point also
belongs to the figure.

B a B’ B
A F /\ A"
E £ M F M
c o A D C
1
Figure 41 . Figure 42

For example, we have seen that the isosceles triangle ABC (Fig-
ure 42) is divided by the bisector B into two triangles (left and
right) which can be identified with each other by folding the dia-
gram along the bisector. One can conclude from this that whatever
point is taken on the left half of the isosceles triangle, one can always
find the point symmetric to it in the right half. For instance, on the
side AR, take a point M. Mark on the side BC the segment BM’
congruent to BM. We obtain the point M’ in the trisngle symmet-
ric to M sbout the axis BD. Indeed, AMBAM' is isosceles since
BM = BM'’ Let F denote the intersection point of the segment
M A’ with the bisector BD of the angle B. Then BK is the bisector
in the isosceles triangle M BA'. By §35 it is also the altitude and the
median. Therefore M M’ is perpendicular to BD, and MF = M'F,
i.e. M and M’ are situated on the opposite sides of BD, on the same
perpendicular to BD, and the same distance away from its foot F.
Thus in an isosceles triangle, the bisector of the angle at the
- vertex is an axis of symmetry of the triangle.

. 38. Remarks. (1) Two symmetric figures can be superimposed
" by rotating one of them in space about the axis of symmetry until
the rotated figure falls into the original plane again. Conversely, if
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two figures can be identified with each other by turning the plane
in space about a line lying in the plane, then these two figures are
symmetric about this line.

(2) Although symmetric figures can be superimposed, they are
not identical in their position in the plane. This should be understood
in the following sense: in order to superimpose two symmetric figures
it is necessary to flip one of them around and therefore to pull it off
the plane temporarily; if however a figure is bound to remain in the
plane, no motion can generally speaking identify it with the figure
symmetric to it about a line. For example, Figure 43 shows two pairs
of symmetric letters:“b” and “d,” and “p” and “q.” By rotating the
letters inside the page one can transform “b” into “q,” and “d” into
“p,” but it is impossible to identify “D” or “q ‘with “d” or “p”
without lifting the symbols off the page.

(3} Axial symmetry is frequently found in nature (Figure 44).

Figure 43 Figure 44

EXERCISES

62. How many axes of symmetry does an equilateral triangle have?
How about an isosceles triangle which is not equilateral?

63.* How many axes of symmetry can a quadrilateral have?

64. A kite is a quadrilateral symmetric about a diagonal. Give an
example of: {a) a kite; (b) a quadrilateral which is not a kite but has
an axis of symmetry.

65. Can a pentagon have an axis of symmetry passing through two
(one, none) of its vertices?

66.* Two points A and B are given on the same side of a line MN.
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Find a point C on M N such that the line M N would make congruent
angles with the sides of the broken line ACB.

Prove theorems:

6°7. In an isosceles triangle, two medians are congruent, two bisectors
are congruent, two altitudes are congruent.

68. If from the midpoint of each of the congruent sides of an isosceles
triangle, the segment perpendicular to this side is erected and con-
tinued to its intersection with the other of the congruent sides of the
triangle, then these two segments are congruent.

69. A line perpendicular to the bisector of an angle cuts off congruent
segments on its sides.

70. An equilateral triangle is equiangular (i.e. all of its angles are
congruent).

71. Vertical angles are symmetric to each other with respect to the
bisector of their supplementary angles.

72. A triangle that has two axes of symmetry has three axes of
symmetry. ,

73. A quadrilateral is a kite if it has an axis of symmetry passing
through a vertex.

74. Diagonals of a kite are perpendicular.

6 Congruence tests for triangles

39. Preliminaries. As we know, two geometric figures are called
congruent if they can be identified with each other by superimposing.
Of course, in the identified triangles, all their corresponding elements,
such as sides, angles, altitudes, medians and bisectors, are congruent.
However, in erder to ascertain that two triangles are congruent, there
is no need to establish congruence of all their corresponding elements.
It suffices only to verify congruence of some of them.

40. Theorems. *

(1) SAS-test: If two sides and the angle enclosed by them
i one triangle are congruent respectively to two sides and.
the angle enclosed by them in another triangle, then such
triangles are congruent.

(2) ASA-test: If one side and two angles adjacent to it in
one triangle are congruent respectively to one side and two

“SAS stands for “side-angle-side”, ASA for “angle-side-angle, and of course
S88S for “side-side-side.”
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angles adjacent to it in another triangle, then such triangles
are congruent.

(3) SSS-test: If three sides of one triangle are congruent
respectively to three sides of another triangle, then such
triangles are congruent.

A , A’

c , B o B’

Figure 45

(1) Let ABC and A'B’C’ be two triangles (Figure 45) such that
AC = A'C', AB=A'B, /A= /A

It is required to prove that these triangles are congruent.

Superimpose AABC onto AA'B'C’ in such a way that A would
coincide with A’ the side AC would go along A’C’, and the side AB
would lie on the same side of A’C’ as A’B’. ° Then: since AC is
congruent to A’C', the point C will merge with '; due to congruence
of £ A and £ A4/, the side AB will go along A’ B/, and due to congruence
~ of these sides, the point B will merge with B Therefore the side
B( will coincide with B/C’ (since two points can be joined by only
one line),.and hence the entire triangles will be identified with each
other. Thus they are congruent.

(2) Let ABC and A'B'C’ (Figure 46) be two triangles such that
/C=/C". /B=/B, CB=C'B.

It is required to prove that these triangles are congruent. Superim-
pose AABC onto AA’B'C’ in such a way that the point ' would
coincide with ¢, the side €B would go along C’B’, and the vertex A
would lie on the same side of C'B’ as A\ Then: since CB is congru-
ent to (' B, the point B will merge with B, and due to congruence of

5For this and some other operations in this section it might be necessary to
flip the triangle over.
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the angles B and B', and C and ', the side BA will go along B’ A’
and the side CA will go along ¢’ A’ Since two lines can intersect
only at one point, the vertex A will have to merge with A, Thus the
triangles are identified and are therefore congruent.

A A’

C B o B

Figure 46

(3) Let ABC and A'B’'C’ be two triangles such that
AB=A'B', BC=BC', CA=C'4A'"

It is required to prove that these triangles are congruent. Proving
this test by superimposing, the same way as we proved the first
two tests, turns out to be awkward, because knowing nothing about
the measure of the angles, we would not be able to conclude from
coincidence of {wo corresponding sides that the other sides coincide
ag well. Instead of superimposing, let us apply juztaposing.

Juxtapose AABC and AA'B’'C’ in such a way that their congru-
ent sides AC and A'C’ would coincide (i.e. A would merge with A’
and C with C7), and the vertices B and B’ would lie on the oppo-
site sides of A'C". Then AABC will occupy the position AA’B"C’
(Figure 47). Joining the vertices B’ and B” we obtain two isosceles
triangles B'A’B"” and B'C’' B” with the common base B'B”. But in an
isosceles triangle, the angles ab the base are congruent (§35). There-
fore /1 = /2 and /3 = £4, and hence ZA'B'C' = ZA'B"'"C' = ZB.
But then the given triangles must be congruent, since two sides and
the angle enclosed by them in one triangle are congruent respectively
to two sides and the angle enclosed by them in the other triangle.

Remark. In congruent triangles, congruent angles are opposed-
to congruent sides, and conversely, congruent sides are opposed to
congruent angles.

The congruence tests just proved, and the skill of recognizing
congruent triangles by the above criteria facilitate solutions to many
~geometry problems and are necessary in the proofs of many theo- -
rems. These congruence tests are the principal means in discovering
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properties of complex geometric figures. The reader will have many
occagions to see this.

Figure 47

EXERCISES

75. Prove that a triangle that has two congruent angles is isosceles.

76. In a given triangle, an altitude is a bisector. Prove that the
triangle is isogceles.

77. In a given triangle, an altitude is a median. Prove that the
triangle is isosceles.

78. On each side of an equilateral triangle ABC, congruent segments
AB', BC', and A(' are marked, and the points A, B, and C’ are
connected by lines. Prove that the triangle A’B'C’ is also equilateral.
79. Suppose that an angle, its bisector, and one side of this angle in
one triangle are respectively congruent to an angle, its bisector, and
one side of this angle in another triangle. Prove that such triangles
are congruent.

80. Prove that if two sides and the median drawn to the first of
them in one triangle are respectively congruent to two sides and the
median drawn to the first of them in another triangle, then such
triangles are congruent.

81. Give an example of two non-congruent triangles such that two
sides and one angle of one triangle are respectively congruent to two
sides and one angle of the other triangle.

82.* On one side of an angle A, the segments AB and AC are marked,
and on the other side the sesgments AB’ = AB and AC' = AC. Prove
that the lines BC’ and B'C meet on the bisector of the angle A.
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83. Derive from the previous problem a method of constructing the
bisector using straightedge and compass.

84. Prove that in a convex pentagon: (a) if all sides are congruent,
and all diagonalg are congruent, then all interior angles are congru-
ent, and (b) if all sides are congruent, and all interior angles are
congruent, then all diagonals are congruent.

85. Is this true that in a convex polygon, if all diagonals are congru-
ent, and all interior angles are congruent, then all sides are congru-
ent?

7 Inequalities in triangles

41. Exterior angles. The angle supplementary to an angle of
a triangle (or polygon) is called an exterior angle of this triangle

{polygzon).

Figure 48 Figure 49

For instance (Figure 48}, ZBCD, LCBE, /BAF are exterior
angles of the triangle ABC. In contrast with the exterior angles, the
angles of the triangle {polygon) are sometimes called interior.

For each interior angle of a triangle (or polygon), one can con-
struct two exterior angles (by extending one or the other side of the
angle). Such two exterior angles are congruent since they are vertical.

42. Theorem. An exierior angle of a triangle is greater
than each interior angle not supplementary to ii.

For example, let us prove that the exterior angle BCD of AABC_
(Figure 49) is greater than each of the interior angles A and B not
supplementary to it.

Through the midpoint F of the side BC, draw the median AFE

‘and on the continuation of the median mark the segment EF con-
gruent to AE. The point F' will obviously lie in the interior .of the
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angle BCD. Connect F with C' by a segment. The triangles ABE
and EFC (shaded in Figure 49) are congruent since at the vertex £
they have congruent angles enclosed between two respectively con-
gruent sides. From congruence of the triangles we conclude that the
angles B and ECF, opposite to the congruent sides AE and EF,
gre congruent too. But the angle ECF forms a part of the exterior
angle BCD and is therefore smaller than ZBCD. Thus the angle B
is smaller than the angle BCD.

By continuing the side BC' past the point ¢ we obtain the exterior
angle ACH congruent to the angle BCD. If from the vertex B, we
draw the median to the side AC and double the median by continuing
it past the side AC, then we will similarly prove that the angle A is
smaller than the angle ACH, i.e. it is smaller than the angle BOD.

B B

A e b A ¢ D

Figure 50 Figure 51

43. Corollary. If in a triangle one angle is right or obtuse, then
the other two angles are acute.

Indeed, suppose that the angle Cin AABC (Figure 50 or 51) is
right or obtuse. Then the supplementary to it exterior angle BC'D
has to be right or acute. Therefore the angles A and B, which by the
theorem are smaller than this exterior angle, must both be acute.

44. Relationships between sides and angles of a triangle.
Theorems. In any triangle

(1) the angles opposite to congruent sides are congruent;
(2) the angle opposite to a grealer side is greater.

(1) If two sides of a triangle are congruent, then the triangle is
isosceles, and therefore the angles opposite to these sides have to be
congruent as the angles at the base of an isosceles triangle (§35).

(2) Let in AABC (Figure 52) the side AB be greater than BC.
It is required to prove that the angle C is greater than the angle A.

On the greater side BA, mark the segment BD congruent to the
smaller gide BC and draw the line joining D with C. We obtain an
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isosceles triangle DBC, which has congruent angles at the base, i.e.
£BDC = ZBCD. But the angle BDC, being an exterior angle with
respect to AADC, is greater than the angle A, and hence the angle
BCD is also greater than the angle A. Therefore the angle BCA
containing ZBCD as its part is greater than the angle 4 too.

B

Figure 52

45. The converse theprems. In any iriangle
(1) the sides opposite to congruent angles are congruent;
(2) the side opposite to a greater angle is greater.

(1) Let in AABC the angles A and C be congruent (Figure 53);
it is required to prove that AB = BC.

B B

Figure 53 Figure 54

Suppose the contrary is true, i.e. that the sides AB and BC are
not congruent. Then one of these sides is greater than the other,
and therefore according to the direct theorem, one of the angles A
and C has to be greater than the other. But this contradicts the
hypothesis that /A = ZC. Thus the assumption that 4B and BC

“gre non-congruent, is impossible. This leaves only the possibility that
AB = BC.
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(2) Let in AABC-(Figure 54) the angle C be greater than the
angle A. It is required to prove that AB > BC.

Suppose the contrary is true, i.e. that AB is not greater than
BC. Then two cases can ocecur; either AB = BC or AB < BC.

According to the direct theorem, in the first case the angle C
would have been congruent to the angle A, and in the second case the
angle C would have been smaller than the angle A. Either conclusion
contradicts the hypothesis, and therefore both cases are excluded.
Thus the only remaining possibility is AB > BC.

Corollary.
(1) In an equilateral triangle all angles are congruent.
(2) In an equiangular triangle all sides are congruent.

46. Proof by contradiction. The method we have just used
to prove the converse theorems is called proof by contradiction,
or reductio ad absurdum. In the beginning of the argument the
assumption contrary to what is required to prove is made. Then by
reasoning on the basis of this assumption one arrives at a contradic-
tion (absurd). This result forces one to reject the initial assumption
and thus to accept the one that was required to prove. This way of
reasoning is frequently used in mathematical proofs.

47. A remark on converse theorems. It is a mistake, not
uncommon for beginning geometry students, to assume that the con-
verse theorem is automstically established whenever the validity of
a direct theorem has been verified. Hence the false impression that
proof of converse theorems is unnecessary at all. As it can be shown
by examples, like the one given in §30, this conclusion is erroneous.

- Therefore converse theorems, when they are valid, require separate

proofs.

However,; in the case of congruence or non-congruence of two sides
of a tma:ngle ABC, c.g. the sides AB and BC, only the following
three cages can occur:

AB = BC, AB> BC, AB < BC.

Each of these three cases excludes the other two: say, if the first
case AB = BC takes place, then neither the 2nd nor the 3rd case
is possible. In the theorem of §44, we have considered all the three
eases and arrived at the following respective conclusions regarding
the opposite angles C and A:

/C =LA, /C>LA, LC< LA
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Each of these conclusions excludes the other two. We have also seen
in §45 that the converse theorems are true and can be easily proved
by reductio ad absurdum.

In general, if in a theorem, or several theorems, we address all pos-
sible mutually exclusive cases (which can occur regarding the magni-
tude of a certain quantity or disposition of certain parts of a figure),
and it turns out that in these cases we arrive at mutually exclusive
conclusions (regarding some other quantities or parts of the figure),
then we can claim a priori that the converse propositions also hold
frue.

We will encounter this rule of convertibility quite often.

48. Theorem. In a triangle, each side is smaller than the
sum of the other two stdes.

If we take a side which is not the greatest one in a triangle, then
of course it will be smaller than the sum of the other two sides.
Therefore we need to prove that even the greatest side of a triangle
is smaller than the sum of the other two sides.

In AABC (Figure 55), let the greatest side be AC. Continuing
the side AB past B mark on it the segment BD = BC and draw
DC. Since ABDC is isosceles, then ZD = /D(C' B, Therefore the
angle I is smaller than the angle DCA, and hence in AADC the
side AC is smaller than AD (§45), i.e. AC < AE + BD. Replacing
BD with BC we get

AC < AB + BC.

Corollary. From both sides of the obtained inequality, subtract
AB or BC:

AC — AB < BC, AC —-B(C < AB.

Reading these inequalities from right to left we see that each of the
sides BC and AB is greater than the difference of the other two sides.
Obviously, the same can also be said about the greatest side AC, and
therefore in o triangle, each side is greater than the difference of the
other two sides.

Remarks. (1) The inequality described in the theorem is often
called the triangle inequality.

(2} When the point B lies on the segment AC, the triangle in-
equality turns into the equality AC = AE + B(C. More generally, if
three points lie on the same line {and thus do not form a triangle},
then the greatest of the three segments connecting these points is the
sum of the other two segments. Therefore for any three pointsit is
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still true that the segment connecling two of them is smaller
than or congruent to the sum of the other two segments.

b c
B
B
A E
D
Figure 55 Figurg 56

49. Theorem. The line segment connecting any two points
18 smaller than any broken line connecling these points.

If the broken line in question congists of only two sides, then the
theorem has already been proved in §48. Consider the case when the
broken line consists of more than two sides. Let AE (Figure 56) be
the line segment connecting the points A and E, and let ABCDE be
a broken line conmecting the same points. We are required to prove
that AFE is smaller than the sum AB+ BC +CD 4+ DE.

Connecting A with € and D and using the triangle inequality we
find:

AE< AD+ DE, AD<AC+CD, AC<AB+ BC.
Morecover, these inequalities cannot turn into equalities all at once.
Indeed, if this happened, then (Figure 57) 17 would lie on the segment

AE, C on AD, B on AB, i.e. ABCDE would not be a broken line,
but the straight segment AE. Thus adding the inequalities termwise

B AE=AD+DE B ap=acrcp AC=AB+BC
VANISA S
;N/ E A —F 2

c

Figure 57

and subtracting AD and AC from both sides we get

AE < AB+BC+CD+ DE.
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50. Theorem. If two sides of one triangle are congruent
respectively to two sides of another triangle, then:

(1) the greater angle contained by these sides is opposed
to the greater side;

(2) vice versa, the greater of the non-congruent sides is
opposed to the greater angle.

A’ SRS

Figure 58

{1) In AABC and AA,B'C’) we are given:
AB=AB', AC=AC', LA>ZA.

We are required to prove that BC > B'C’. Put AA'B'C’ onto
AABC in a way (shown in Figure 58) such that the side A’C’ would
coincide with AC. Since LA’ < ZA, then the side A’ B’ will lie inside
the angle A. Let AA'B'C’ occupy the position AB”C (the vertex
B’ may fall outside or inside of AABC, or on the side BC, but the
forthcoming argument applies to all these cases). Draw the bisector
AD of the angle BAB" and connect D with B”. Then we obtain two
triangles ABD and DAB" which are congruent because they have a
common side AD, AB = AB" by hypothesis, and £/BAD = ZBAD"
by construction. Congruence of the triangles implies BD = DB
From ADCB" we now derive: B"C < B"D + D( (§48). Replacing
B"D with BD we get

B"C <« BD + DC, and hence B'C’ <« BC.

(2) Suppose in the same triangles ABC and A’B’C’ we are given
that AB = A'B, AC = A'C' and BC > B’C’; let us prove that
LA> LA

Assume the contrary, i.e. that the ZA is not greater than ZA'
" Then two cases can occur: either /A = ZA" or LA < ZA In the
first case the triangles would have been congruent (by the SAS-test)
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and therefore the side BC would have been congruent to B'C’, which
contradicts the hypotheses. In the second case the side BC would
have been smaller than B'C’ by part (1) of the theorem, which con-
tradicts the hypotheses too. Thus both of these cases are excluded;
the only case that remains possible is ZA > £A'

EXERCISES

86. Can an exterior angle of an isosceles triangle be smaller than the
supplementary interior angle? Consider the cases when the angle is:
(a) at the base, and (b) at the vertex.

87. Can a triangle have sides: (a) 1, 2, and 3 c¢m (centimeters) long?
(b) 2, 3, and 4 c¢m long? .

88. Can a quadrilateral have sides: 2, 3, 4, and 10 c¢m long?

Prove theorems:

&9. A gide of a triangle is smaller than its semiperimeter.
90. A median of a triangle is smaller than its semiperimeter.

91.* A median drawn to a side of a triangle is smaller than the
semisum of the other two sides.

Hint: Double the medisn by prolonging it past the midpoint of the
first side.

92. The sum of the medians of a triangle is smaller than its perimeter
but greater than its semi-perimeter.

93. The sum of the disgonals of a quadrilateral is smaller than its
perimeter but greater than its semi-perimeter.

94. The sum of segments connecting a point inside a triangle with
its vertices is smaller than the semiperimeter of the triangle.

95.* Given an acute angle XOY and an interior point A. Find a
point B on the side OX and a point C on the side OY such that the
perimeter of the triangle ABC is minimal.

Hint: Introduce points symmetric to A with respect to the sides of
the angle.

8 Right triangles

51. Comparative length of the perpendicular and a slant.

Theorem. The perpendicular dropped from any point to a
line is smaller than eny slant drawn from the same point
to this line.
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Let AB (Figure 59) be the perpendicular dropped from a point
A to the line M N, and AC be any slant drawn from the same point
A to the line M N. It is required to show that AB < AC.

In AAEBC, the angle B is right, and the angle C is acute (§43).
Therefore ZC < £B, and hence AB < A(, as required.
Remark. By “the distance from a poeint to a line,” one means the

shortest distance which is measured along the perpendicular dropped
from this point to the line.

A A
M - N M B N
c B C B D E
b |
Figure 5% Figure 60

52. Theorem. If the perpendicular and some slants are
drawn to a line from the same point outside this line, then:

(1) if the feet of the slants are the same distance away
from the foot of the perpendicular, then such slants are con-
gruemnt;

(2) if the feet of two slants are not the same distance
away from the fool of the perpendicular, then the slant
whose foot is farther away from the foot of the perpendicu-
lar 15 gréoter.

(1) Let AC and AD (Figure 60) be two slants drawn from a
point A to the line MN and such that their feet C and D are the
same distance away from the foot B of the perpendicular AB, i.e.
CB = BD. It is required to prove that AC = AD.

In the triangles ABC and ABD, AB is 8 common side, and
beside this BC = BD (by hypothesis) and LZABC = £ZABD (asright
angles). Therefore these triangles are congruent, and thus AC = AD.

(2) Let AC and AFE (Figure 59) be two slants drawn from the
point A to the line A4 N and such that their feet are not the same

“distance away from the foot of the perpendicular; for instance, let
BE > BC. It is required to prove that AF > AC. -
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Mark BD = BC and-draw AD. By part (1), AD = AC. Com-
pare AE with AD. The angle ADE is exterior with respect to
AABD and therefore it is greater than the right angle. Therefore
the angle ADF is cbtuse, and hence the angle AED must be acute
(§43). It follows that ZADE > LAED, therefore AE > AD, and
thus AE > AC.

53. The converse theorems. If some slanits and the per-
pendicular are drawn to a line from the same point outside
this line, then:

(1) if two slants are congruent, then their feet are the
same distance away from the foot of the perpendicular;

(2) if two slants are not congruent, then the foot of the
greater one is farther away from the fool of the perpendic-
wlor.

We leave it to the readers to prove these theorems (by the method
of reductio ad absurdum).

54. Congruence tests for right triangles. Since in right |
triangles the angles contained by the legs are always congruent as
right angles, then right iriangles are congruent:

(1) if the legs of one of them are congruent respectively to the legs
of the other;

(2} if a leg and the acute angle adjacent to it in one iriangle are
congruent respectively to a leg and the acute angle adjacent to it in
the other iriangle.

These two tests require no special proef, since they are particular
cases of the general SAS- and ASA-tests. Let us prove the following
two tests which apply to right triangles only.

55. Two tests requiring special proofs.

Theorems. Two right iriangles are congruent: '

(1) if the hypotenuse and an acute angle of one triangle
are congruent to respectively the hypolenuse and an acule
angle of the other.

(2) if the hypotlernuse and a leg of one triangle are con-
gruent respectively to the hypotenuse and a leg of the other.

(1) Let ABC and A; B1Cy (Figure 61) be two right triangles such
that AB = A1 B and £A = ZA;. It is required to prove that these
triangles are congruent.

- Put AABC onto AA1B1C1 in & way such that their congruent
hypotenuses coincide. By congruence of the angles A and A;, the
leg AC will go along A1C1. Then, if we assume that the point C
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occupies a position Cy or (3 different from Cp, we will have two
perpendiculars (B1C; and B1Cy, or B;C} and B;Cj) dropped from
the same point B’ to the line A’C”. Since this is impossible (§24), we
conclude that the point ¢ will merge with €.

B B, B8 B,
A c A, c,C G A C A, A, A, C
Figure 61 Figure 62

(2) Let (Figure 62), in the right triangles, it be given: AB = 4; B
and BC = B1C. It is required to prove that the triangles are congru-
ent. Put AABC onto AApB;C) in a way such that their congruent
legs BC and B1C) coincide. By congruence of right angles, the side
C' A will go along C1A;1. Then, if we assume that the hypotenuse AB
occupies a position A2DB1 or AsB; different from A; B, we will have
two congruent slants (4181 and AyB, or A1 B and AzBp) whose
feet are not the same distance away from the foot of the perpendic-
ular B1C;. Sinece this is impossible (§53) we conclude that AB will
be identified with A15;.

EXERCISES

Prove theorems:

96. Each leg of a right triangle is smaller than the hypotenuse.

97. A right triangle can have at most one axis of symmetry.

98. At most two congruent slants to a given line can be drawn from
a given point.

99." Two isosceles triangles with a common vertex and congruent
lateral sides cannot fit one inside the other.

100. The bisector of an angle is its axis of symmetry.

101. A triangle is isosceles if two of its altitudes are congruent.
102. A median in s trisngle is equidistant from the two vertices not

“lying on it.

103.* A line and a circle can have at most two common points.
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9 Segment and angle bisectors

56. The perpendicular bisector, i.e. the perpendicular to a seg-
ment erected at the midpoint of the ségment, and the bisector of an
angle have very similar properties. To see the resemblance better we
will describe the properties in a parallel fashion.

(1) If a point (K, Fig-
ure 63} lies on the perpen-
dicular (MN) erected at the
midpoint of o segment (AB),
then the point is the same
distance oway from the end-
points of the segment (ie.
KA =KDB).

Since MN 1 AB and AQ =
OB, AK and KB are slants to
AB, and their feet are the same
distance away from the foot of

the perpendicular. Therefore
KA=KB.
M
K
oh
A B
N
Figure 63

(2} The converse theorem.
If a point (K, Figure 63) is the
same distance away from
the endpoints of the seg-
ment AB (ie. if KA = KB),
then the point lies on the
perpendicular to AB passing
through its midpoind.

(1) If a peint (K, Figure
64) lies on the bisector (OM)
of an angle (AOB), then the
pont ts the same distance
away from the sides of the
angle (i.e. the perpendiculars
KD and KC are congruent).

Since OAf bisects the angle,
the right triangles OCK and
ODK are congruent, as they
have the common hypotenuse
and congruent acute angles at
the vertex O. Therefore KC =
KD.

M

Figﬁr@ 64

(2) The converse theorem.
If an interior point of an
angle (K, Figure 64) is the
same distance away from iis
sides (i.e. if the perpendicu-
lars K'C and K D are congruent)
then i lies on the bisecior
of this angle.
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Through K, draw the line
MN 1 AB. We get two right
triangles K AO and K BO which
are congruent as having congru-
ent hypotenuses and the com-
mon leg K (2. Therefore the line
MN drawn through X to be
perpendicular to AB bisects if.

Through O and K, draw
the line OM. Then we get
two right triangles OCK and
ODK which are congruent as
having the common hypotenuse
and the congruent legs CK and
DK. Hence they have congru-
ent angles at the vertex O, and
therefore the line OM drawn to
pass through K bisects the angle
AOB.

57. Corollary. From the two proven theorems (direct and con-
verse) one can also derive the following theorems:

If a point does not lie on
the perpendicular erected at the
midpoint of a segment then the
point is unequal distances’ away
from the endpoinits of this seg-
memnt.

If an interior point of an an-
gle does not lie on the ray bisect-
ing i, then the point is unequal
distances away from the sides of
this angle.

We leave it to the readers fo prove these theorems (using the

method reductio ad absurdum).

58. Geometric locus. The geometric locus of points satis-

fying a certain condition is the curve (or the surface in the space)
or, more generally, the set of points, which contains all the points
gatigfying this condition and contains no points which do not satisfy
it. ,

For ingtance, the geometric locus of points at a given distance r
from a given point ' is the circle of radius r with the center at the
point C. As it follows from the theorems of §56, §57:

The geometric locus of points equidistant from twe given points
is the perpendicular to the segment connecting these poinis, passing
through the midpoint of the segment.

The geometric locus of interior points of an angle equidistant from
its sides is the bisector of this angle.

59. The inverse theorem. If the hypothesis and the conclusion
of a theorem are the negations of the hypothesis and the conclusion
- of another theorem, then the former theorem is called inverse to the
latter one. For instance, the theorem inverse to: “if the digit sum
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is divisible by 9, then the number is divisible by 9” is: “if the digit
sum is not divisible by 9, then the number is not divisible by 9.”

It is worth mentioning that the validity of a direct theorem does
not guarantee the validity of the inverse one: for example, the inverse
proposition “if not every summand is divisible by a certain number
then the sum is not divisible by this number” is false while the direct
proposition is true.

The theorem described in §57 (both for the segment and for the
angle) is inverse to the (direct) theorem described in §56.

60. Relationships between the theorems: direct, con-
verse, inverse, and contrapositive. For better understanding
of the relationship let us denote the hypothesis of the direct theorem
by the letter A, and the conclusion by the letter B, and express the
theorems concisely as:

(1) Direct theorem: if A is true, then B is true;

(2) Converse theorem: if B is true, then A is true;

(3) Inverse theorem: if A is false, then B is false;

(4) Contrapositive theorem: if B is false, then A is false.

Considering these propositions it is not hard to notice that the
first one is in the same relationship to the fourth as the second one to
the third. Namely, the propositions (1) and (4) can be transformed
into each other, and so can the propositions (2) and (3). Indeed, from
the proposition: “if A is true, then B is true” it follows immediately
that “if B is false, then A is false” (since if A were true, then by
the first proposition B would have been true too); and wvice versa,
from the proposition: “if B is false, then A is false” we derive: “if
A is true, then B is true” (since if B were false, then A would have
been false as well). Quite similarly, we can check that the second
proposition follows from the third one, and vice verse.

Thus in order to make sure that all the four theorems are valid,
there is no need to prove each of them separately, but it suffices to
prove only two of them: direct and converse, or direct and inverse.

EXERCISES

104. Prove as a direct theorem that a point not lying on the perpen-
dicular bisector of & segment is not equidistant from the endpoints
of the segment; namely it is closer to that endpoint which lies on the
same side of the bisector.

105. Prove as a direct theorem that any interior point of an angle
which does not lie on the bisector is not equidistant. from the sides
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of the angle.

106. Prove that two perpendiculars to the sides of an angle erected
at equal distances from the vertex meet on the bigsector.

107. Prove that if A and A/, and B and B’ are two pairs of points
symmetric about some line XY, then the four points A, A, B, B lie
on the same circle.

108. Find the geometric locus of vertices of isosceles triangles with
a given base. .

109. Find the geometric locus of the vertices A of triangles ABC
with the given base BC and such that ZB > ZC.

110. Find the geometric locus of points equidistant from two given
intersecting infinite straight lines.

111.* Find the geometric locus of points equidistant from thres given
infinite straight lines, intersecting pairwise.

112. For theorems from §60: direct, converse, inverse, and contra-
positive, compare in which of the following four cases each of them
is true: when (a) A is true and B is true, (b) A is true but B is false,
(¢} A is false but B is truey and (d) A is false and B is false.

113. By definition, the negation of a proposition is true whenever
the proposition is falge, and false whenever the proposition is true.
State the negation of the proposition: “the digit sum of every mul-
tiple of 3 is divisible by 9.” Is this proposition true? Iz its negation
true?

114. Formulate affirmatively the negations of the propositions:
(2) in every quadrilateral, both diagonals lie inside it; (b) in ev-
ery quadrilateral, there is a diagonal that lies inside it; (¢} there
is a quadrilateral whose both diagonals lie inside it; (d} there is a
quadrilateral that has a diagonal lying outside it. Which of these
propositions are true?

- 10 Basic construction problems

61. Preliminary remarks. Thecrems we proved earlier allow
us to solve some construction problems. Note that in elementary
geometry one considers those constructions which can be performed
using only straightedge and compass. ©

62. Problem 1. To. construct a triangle with the given
three sides a, b and c (Figure 65).

SAs we will see, the use of the drafting triangle, which can be allowed for
saving time in the actual construction, is unnecessary in principle.



IO.I Basic construction problems 49

On any line M N, mark the segment CB congruent to one of the
given sides, say, a. Describe two arcs centered at the points C' and
B of radii congruent to b and to ¢. Connect the point A, where these
arcs intersect, with B and with C. The required triangle is ABC.

M L] N

Figure 65

Remark. For three segments to serve ag sides of a triangle, it is
necessary that the greatest one is smaller than the sum of the other
two (§48).

63. Problem 2. To construct an angle congruent to the
given angle ABC and such that one of the sides is a given

line M N, and the vertex is at a point O given on the line
{(Figure 66).

Figure 66

Between the sides of the given angle, describe an arc EF of any
radius centered at the vertex B, then keeping the same setting of the
compass place its pin leg at the point O and describe an arc PQ.
Furthermore, describe an arc ab centered at the point P with the ra-
dius equal to the distance between the points F and ¥. Finally draw
a line through (0 and the point R (the intersection of the two arcs).
The angle ROP is congruent to the angle ABC because the triangles
ROP and FBE are congruent as having congruent respective sides.

64. Problem 3. To bisect a given angle (Figure 67), or in
other words, to construct the bisector of a given angle or to
draw its axris of symmelry.
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Between the sides of the angle, draw an arc DE of arbitrary
radiug centered at the vertex B. Then, setting the compass to an
arbitrary radius, greater however than half the distance between D
and E (see Remark to Problem 1), describe two arcs centered at D
and E so that they intersect at some point F. Drawing the line BF
we obtain the bisector of the angle ABC.

For the proof, connect the point F with D and E by segments. We
obtain two triangles BEF and BDF which are congruent since BF
is their common side, and BD = BE and DE = EF by construction.
The congruence of the triangles implies: ZABF = Z{/BF.

Figure 67 Figure 68

65. Problen 4. From a gz'-'ven' point C on the line AB, to
erect a perpendicular to this line (Figure 68).

On both sides of the point C on the line AL, mark congruent
segments CD and CFE (of any length). Describe two arcs centered
at D and F of the same radius (greater than C'IJ) so that the arcs
intersect at a point F. The line passing through the points C and F
will be the required perpendicular.

Indeed, as it is evident from the construction, the point 7 will
have the same distance from the points I and E; therefore it will lie
on the perpendicular to the segment AB passing through its midpoint
(§56). Since the midpoint is C, and there is only one line passing
through ¢ and F', then F'C L DE.

66. Problem 5. From a given point A, to drop a perpen-
dicular to a given line BC (Figure 69).

Draw an arc of arbitrary radius (greater however than the dis-
tance from A to BC} with the center at A so that it intersects BC
at some points D and F. With these points as centers, draw two
arcs of the same arbitrary radius (greater however than $DE) so
~that they intersect at some point F. The line AF is the reqmred
perpendicular.
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Indeed, as it is evident from the construction, each of the points
A and F is equidistant from D and E, and all such points lie on
the perpendicular to the segment AB passing through its midpoint

(§58).

A7 C
A B
\D E/ "
g  —1 c
=X
34
-

Figure 69 Figure 10

67. Problem 6. To draw the perpendicular to o given seg-
ment AB through its midpoint (Figure 70); in other words, fo
construct the axis of symmetry of the segment AB.

Draw two arcs of the same arbitrary radius (greater than %AB},
centered at A and B, so that they intersect each other at some points
C and D. The line CD is the required perpendicular.

Indeed, as it is evident from the construction, each of ,the points
C and D is equidistant from A and B, and therefore must lie on the
symmetry axis of the segment AB.

Problem 7. To bisect a given straight segment (Figure 70).
It is solved the same way as the previous problem.

68. Example of a more complex problem. The basic con-
structions allow one to solve more complicated construction prob-
lems. As an illustration, consider the following problem.

Problem. 7o construct a triangle with a given base b, an angle
« at the base, and the sum s of the other two sides {Figure 71). To
work out a solution plan, suppose that the problem has been solved,
i.e. that a triangle ABC has heen found such that the base AC = b,
ZA = o and AB + BC = s. Examine the obtained diagram. We
know how to construct the side AC congruent to & and the angle 4
congruent to «. Therefore it remains on the other side of the angle
to find a point B such that the sum AB 4+ BC is congruent to s.
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Continuing AB past B, mark the segment AD congruent to s. Now
the problem reduces to finding on AD a point B which would be the
same distance away from C and D. As we know (§58), such a point
must lie on the perpendicular to CD passing through its midpoint.
The point will be found at the intergsection of this perpendicular with
AD.

)
Figure 71

Thus, here is the solution of the problem: construct (Figure 71)
the angle A congruent to . On its sides, mark the segments AC = b
and AD = s, and connect the point D with C. Through the midpeint
of CD, construct the perpendicular BE. Counnect its intersection
with AD, i.e. the point B, with . The triangle ABC is a solution
of the problem since AC = b, ZA = a and AB + BC = s (because
BD = BC).

Examining the construction we notice that it is not always pos-
sible. Indeed, if the sum s is too small compared to b, then the
perpendicular B may miss the segment AD (or intersect the con-
tinuation of AD past A or past D). In this case the construction
furns out impossible. Moreover, independently of the construction
procedure, one can see that the problem has no solution if s < b or
s = b, because there is no triangle in which the sum of two sides is
smaller than or congruent to the third side.

In the case when a solution exists, it turns out to be unique, ie.
there exists only one triangle, 7 satisfying the requirements of the

_ "There are infinitely many triangles satisfying the requirements of the problein,
but they are all congruent to each other, and so it is customary to say that the
solution of the problem is unique.
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problem, since the perpendicular BE can intersect AD at one point
at most.

69. Remark. The previous example shows that sclution of a
complex construction problem should consist of the following four
stages.

(1) Assuming that the problem has been solved, we can draft
the diagram of the required figure and, carefully examining it, try
to find those relationships between the given and required data that
would allow one to reduce the problem to other, previously solved
problems. This most important stage, whose aim is to work out a
plan of the solution, is called analysis.

(2) Once a plan has been found, the construction following it
can be executed.

(3) Next, to validate the plan, one shows on the basis of known
theorems that the constructed figure does satisfy the requirements
of the problem. This stage is called synthesis.

(4) Then we ask ourselves: if the problem has a solution for
any given data, if a solution is unique or there are several ones,
are there any special cases when the construction simplifies or, on
the contrary, requires additional examination. This solution stage is
called research.

When a problem is very simple, and there is no doubt about possi-
bility of the solution, then one usually omits the analysis and research
stages, and provides only the construction and the proof. This was
what we did describing our solutions of the first seven problems of
this section; this is what we are going to do later on whenever the
problems at hand will not be too complex.

EXERCISES

Construct:

115. The gum of two, three, or more given angles.
116. The difference of two angles. |
117. Two angles whose sum and difference are given.
118. Divide an angle into 4, 8, 16 congruent parts.

119. A line in the exterior of a given angle passing through its vertex -
and such that it would form congruent angles with the sides of this
angle.

120. A triangle: (a) given two sides and the angle between them;
(b) given one side and both angles adjacent to it; {c) given two sides
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and the angle opposite to the greater one of them; (d) given two sides
and the angle opposite to the smaller one of them (i this case there
can be two solutions, or one, or none).

121. An isosceles triangle: (a) given its base and another side;
(b) given its base and a base angle; (c) given its base angle and
the opposite side.

122. A right triangle: (a) given both of its legs; (b) given one of the
legs and the hypotenuse; (c) given one of the legs and the adjacent
acute angle. ‘
123. An isosceles triangle: (a) given the altitude to the base and
one of the congruent sides; (b) given the altitude to the bage and the
angle at the vertex; (¢) given the base and the altitude to another
side.

124. A right triangle, given an acute angle and the hypotenuse.
125, Through an interior point of an angle, construct a line that
cuts off congruent segments on the sides of the angle.

126. Through an exterior point of an angle, construct a line which
would cut off congruent ségments on the sides of the angle.

127. Find two segments whose sum and difference are given.

128. Divide a given segment into 4, 8, 16 congruent parts.

129. On a given line, find & point equidistant from two given points
(outside the line).

130. Find a point equidistant from the three vertices of a given
triangle.

181. On a given line intersecting the sides of a given angle, find a
point equidistant from the sides of the angle.

132. Find a point equidistant from the three sides of a given triangle.

133. On an infinite line AB, find a point C such that the rays CM
and CN connecting € with two given points M and N situated on
the same side of AB would form congruent angles with the rays CA
and C B respectively.

134. Construct a right triangle, given one of its legs and the sum of
the other leg with the hypotenuse.

185. Construct a triangle, given its base, one of the angles adjacent
to the base, and the difference of the other two sides (consider two
cases: (1) when the smaller of the two angles adjacent to the base is
given; (2) when the greater one is given).

" 136. Construct a right triangle, given one of its legs and the differ-
ence of the other two sides.
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137. Given an angle A.and two points B and C situated one on one
side of the angle and one on the other, find: (1) a point M equidistant
from the sides of the angle and such that M B = MC; (2) a point
N equidistant from the sides of the angle and such that NB = BC;
(3) a point P such that each of the points B and C' would be the
same distance away from A and P.

138. T'wo towns are situated near a straight railroad line. Find the
position for a railroad station so that it is equidistant from the towns.

139. Given a point A on one of the sides of an angle B. On the
other side of the angle, find a point C such that the sum CA+ CB
is congruent to a given segment.

11 Parallel lines

70. Definitions. Two lines are called parallel if they lie in
the same plane and do not intersect one ancther no matter how far
they are extended in both directions.

In writing, parallel lined are denoted by the symbol ||. Thus, if
two lines AB and CD are parallel, one writes AB||CD.

Existence of parallel linesg is established by the following theorem.

71. Theorem. Two perpendiculars (AB and CD, Figure 72)
to the same line (M N) cannot intersect no matter how far
they are extended.

P

/N

Figure 72

Indeed, if such perpendiculars could intersect at some point P,
“then two perpendiculars to the line M N would be dropped from this
point, which is impossible (§24). Thus two perpendiculars to the
same line are parallel to each other.
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72. Names of angles formed by intersection of two lines
by a transversal. Let two lines AB and CD (Figure 73) be inter-
sected by a third line MN. Then 8 angles are formed (we labeled
them by numerals) which carry pairwise the following names:

corresponding angles: 1 and 5, 4 and 8, 2 and 6, 3 and 7;

alternate angles: 3 and 5, 4 and 6 (interior); 1 and 7, 2 and &
(exterior);

same-side angles: 4 and 5, 3 and 6 (interior); 1 and 8, 2 and 7
{exterior).

Figure 73

73. Tests for parallel lines. When two lines (AB and CD,
Figure 74} are intersected by a third line (MN), and it turns
out that:

(1) some corresponding angles are congruent, or
(2} some alternate angles are congruent, or

(3) the sum of some same-side interior or same-side
exterior angles is 2d,

then these two lines are parallel.

Suppose, for example, that the corresponding angles 2 and 6 are
congruent. We are required to show that in this case AB||CD. Let us
assume the contrary, i.e. that the lines AB and CD are not parallel.
Then these lines intersect at some point P lying on the right of M N
or at some point P’ lying on the left of M N. If the intersection is at
P, then a triangle is formed for which the angle 2 is exterior, and the
angle 6 interior not supplementary to it. Therefore the angle 2 has to
be greater than the angle 6 {§42), which contradicts the hypothesis.
Thus the lines AB and CD cannot intersect at any point P on the
" right of A4 N. If we assume that the intersection is at the point P/,
then a triangle is formed for which the angle 4, congruent to the
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angle 2, is interior and the angle 6 is exterior not supplementary to
it. Then the angle 6 has to be greater than the angle 4, and hence
greater than the angle 2, which contradicts the hypothesis. Therefore
the lines AB and C'D cannot intersect at a point lying on the left
of MN either. Thus the lines cannot intersect anywhere, i.e. they
are parallel. Similarly, one can prove that AB||CD if Z1 = Z5, or
L3 =27, ete.

M D
M F
: A 1/2 B 2
4/3
P’ P
c 8/7 D !
A E ¢ B
N
Figure 74 Figure 75

Suppose now that £44+ 45 = 2d. Then we conclude that £4 = Z6
since the sum of angle 6 with the angle 5 ig also 2d. But if £4 = Z6,
then the lines AB and C'D cannot intersect, since if they did the
angles 4 and 6 (of which one would have been exterior and the other
interior not supplementary to it) could not be congruent.

74. Problem. Through a given point M (Figure 75), to construct
a line parallel to a given line AB.

A simple solution to this problem consists of the following. Draw
an arc CD of arbitrary radius centered at the point M. Next, draw
the arc M E of the same radius centered at the point C. Then draw
a small arc of the radius congruent to M E centered at the point
so that it intersects the arc CD at some point F'. The line M F will
be parallel to AB.

Figure 76
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To prove this, draw the auxiliary line MC. The angles 1 and
2 thus formed are congruent by construction (because the iriangles
EMC and MCF are congruent by the SSS-test), and when alternate
angles are congruent, the lines are parallel.

For practical construction of parallel lines it is also convenient to
use a drafting triangle and a straightedge as shown in Figure 76.

Figure 77 Figure 78

75. The parallel postulate. Through a given point, one
cannot draw two different lines parallel to the same line.

Thus, if (Figure 77) CE|AB, then no other line CE' passing
through the point C can be parallel to AB, i.e. CE' will meet AB
when extended.

It turns out impossible to prove this proposition, i.e. to derive it
as a consequence of earlier accepted axioms. It becomes necessary
therefore to accept it as a new assumption (postulate, or axiom).

M 5 M
! H
V £ B A E B
Al
2 2]
c /F D C F D
N
Figure 79 Figure BO

76. Corollary. (1) If CE|AB (Figure 77), and a third line CE'
intersects one of these two parallel Enes, then it intersects the other
as well, because otherwise there would be two different lines CE and
O F' passing through the same point ¢ and parallel to AB, which is
impossible.
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(2) If each of two lines a and b (Figure 78) is parallel to the same
third line ¢, then they are parallel to each other.

Indeed, if we assume that the lines 2 and b intersect at some point
M, there would be two different lines passing through this point and
parallel to ¢, which is impossible.

77. Angles formed by intersection of parallel lines by a
transversal.

Theorem {converse to Theorem of §73). If two parallel lines
{AB and CD, Figure 79) are intersected by any line (MN),
thern:

(1) corresponding angles are congruent;

(2) alternate angles are congruent;

(3} the sum of same-gide interior angles is 2d;

(4) the sum of same-side exterior angles is 2d.

Let us prove for example that if AB||CD, then the corresponding

 angles a and b are congruent.

Assume the contrary, i.e. that these angles are not congruent (let
us say £1 > £2). Constructing /M FEB' = /2 we then obtain a line
A’B’ distinet from AB and have therefore two lines passing through
the point F and parallel to the same line CD. Namely, AB||CD by
the hypothesis of the theorem, and A’B’'||C D due to the congruence
of the corresponding angles M EB' and 2. Since this contradicts the
parallel postulate, then our assumption that the angles 1 and 2 are
not congruent must be rejected; we are left to accept that £1 = £2.

Other conclusions of the theorem can be proved the same way.

Corollary. A perpendicular to one of two parallel lines iz per-
pendicular to the other one as well.

~ Indeed, if AB||CD (Figure 80) and ME | AB, then firstly M E,
which intersects AB, will also intersect C'D at some point F, and
secondly the corresponding angles 1 and 2 will be congruent. But
the angle 1 is right, and thus the angle 2 is also right, i.e. ME L CD.

78. Tests for non-parallel lines. From the two theorems: di-
rect (§73) and its converse (§75), it follows that the inverse
theorems also hold true, ie.:

If two lines are intersected by a third one in a way such that
(1) corresponding angles are not congruent, or (2) aliernate interior
angles are not congruent, etc., then the two lines are not parallel;

If two lines nre not parollel and are intersected by a third one,
then (1) corresponding angles are not congruent, (2) alternate interior
angles are not congruent, etc. Among all these tests for non-parallel
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lines (which are easily proved by reductio ad absurdum), the following
one deserves special attention:

If the sum of two same-side interior angles (1 and 2, Fig-
ure 81) differs from 2d, then the two lines when extended far
enough will intersect, since if these lines did not intersect, then
they would be parallel, and then the sum of same-side interior angles
would be 2d, which contradicts the hypothesis.

/v
|/

¥

This proposition {supplemented by the statement that the lines
intersect on that side of the transversal on which the sum of the same-
side interior angles is smaller than 2d) was accepted without proof
by the famous Greek geometer Euclid (who lived in the 3rd century
B.C.) in his Elements of geometry, and is known as Euclid’s pos-
tulate. Later the preference was given to a simpler formulation: the
parallel postulate stated in §75.

Figure 81

A C

8|1\ /2\p

Figure 82 Figure 83

Let us point out two more tests for non-parallelism which will be
used later on:
(1) A perpendicular (AB, Figure 82) and a slant (CD) to
the same line (EF) intersect each other, because the sum of
same-side interior angles 1 and 2 differs from 2d.
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(2) Two lines (AB and CD, Figure 83) perpendicular to two
intersecting lines (FE and F'G) intersect as well.

Indeed, if we assume the contrary, i.e. that AR|CD, then the
line F' D, being perpendicular to one of the parallel lines (CD), will
be perpendicular to the other {AB), and thus two perpendiculars
from the same point F' to the same line AB will be dropped, which
is impossible.

79. Angles with respectively parallel sides.

Theoren. If the sides of one angle are respectively parallel
to the sides of another angle, then such angles are either
congruent or add up to 2d.

5/2 3
-1—46 i
;{
Il -
Figure 84

Consider separately the following three cases (Figure 84).

(1) Let the sides of the angle 1 be respectively parallel to the
sides of the angle 2 and, beside this, the directions of the respective
sides, when counted away from the vertices (as indicated by arrows
on the diagram), happen to be the same.

Extending one of the sides of the angle 2 until it meets the non-
parallel to it side of the angle 1, we obtain the angle 3 congruent
to each of the angles 1 and 2 {as corresponding angles formed by a
transversal intersecting parallel lines). Therefore /1 = Z2.

{2) Let the sides of the angle 1 be respectively parallel to the
sides of the angle 2, but the respective sides have opposite directions
away from the vertices.

Extending both sides of the angle 4, we obtain the angle 2, which
is congruent to the angle 1 (as proved sarlier] and to the angle 4 {as
vertical to it). Therefore /4 = Z1.

(3) Finally, let the sides of the angle 1 be respectively parallel to
the sides of the angles 5 and 6, and one pair of respective sides have
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the same directions, while the other pair, the opposite ones.

Extending one side of the angle 5 or the angle 6, we obtain the an-
gle 2, congruent (as proved earlier) to the angle 1. But
Z5(or £6) + £2 = 2d (by the property of supplementary angles).
Therefore /5(or £6) + £1 = 2d too.

Thus angles with parallel sides turn out t6 be congruent when the
directions of respective sides away from the vertices are either both
the same or both opposite, and when neither condition is satisfied,
the angles add up to 24. '

Remark. One could say that two angles with respectively parallel
sides are congruent when both are acute or both are obtuse. In some
cases however it is hard to determine a prior: if the angles are acute
or obtuse, so comparing directions of their sides becomes necessary.

Figure 85

80. Angles with respectively perpendicular sides.

Theorem. If the sides of one angle are respectively per-
pendicular to the sides of another one, then such angles are
either congruent or add up to 2d.

Let the angle ABC labeled by the number 1 (Figure 85) be one
of the given angles, and the other be one of the four angles 2, 3, 4,

5 formed by two intersecting lines, of which one is perpendicular to
the side AB and the other to the side BC.

From the vertex of the angle 1, draw two auxiliary lines: BD L
BC and BE 1 BA. The angle 6 formed by these lines is congruent to
the angle 1 for the following reason. The angles DBC and EBA are
congruent since both are right. Subtracting from each of them the
same angle FBC we obtain: £Z1 = £6. Now notice that the sides of
the auxiliary angle 6 are paralle]l to the intersecting lines which form

“the angles 2, 3, 4, 5 (because two perpendiculars to the same line are
parallel, §71). Therefore the latter angles are cither congruent to the
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angle 6 or supplement it to 2d. Replacing the angle 6 with the angle
1 congruent to it, we obtain what was required to prove,

EXERCISES

140. Divide the plane by infinite straight lines into five parts, using
as few lines as possible.

141. In the interior of a given angle, construct an angle congruent,
to it. ' _

142. Using a protractor, straightedge, and drafting triangle, meagure
an angle whose vertex does not fit the page of the diagram.

143. Bow many axes of symmetry doeg & pair of parallel lines have?
How about three parallel lines?

144. Two parallel lines are intergected by a transversal, and one
of the eight angles thus formed ig 72°. Find the measures of the
remaining seven angles.

145. One of the interior angles formed by a transversal with one of
two given parallel lines is 4d/5. What angle does its bisector make
with the other of the two parallel lines?

146. The angle a transversal makes with one of two parallel lines is
by 90° greater than with the other. Find the angle.

147. Four out of eight angles formed by a transversal intersecting
two given lines contain 60° each, and the remaining four contain 120°
each. Does this imply that the given lines are parallel?

148. At the endpoints of the base of a triangle, perpendiculars to
the lateral sides are erected. Compute the angle at the vertex of the
triangle if these perpendiculars intersect at the angle of 120°.

149. Through a given point, construct a line making a given angle
to a given line.

150. Prove that if the bisector of one of the exterior angles of a
triangle is parallel to the opposite side, then the triangle is isosceles.

151. In a triangle, through the intersection point of the bisectors of
the angles adjacent to a base, a line parsallel to the bage is drawn.
Prove that the segment of this line contained between the lateral
sides of the triangle is congruent to the sum of the segments cut out
on these sides and adjacent to the base.

152.* Bisect an angle whose vertex does not fit the page of the
diagram.
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12 The angle sum of a polygon

81. Theorem. The sum of angles of a triangle is 2d.

Let ABC (Figure 86) be any triangle; we are required to prove
that the sum of the angles 4, B and C is 2d, i.e. 180°.

Extending the side AC past C and drawing C'E||AB we find:
LA = ZECD (as corresponding angles formed by a transversal inter-
secting parallel lines) and 2B = ZBCE (as alternate angles formed
by & transversal intersecting parallel lines). Therefore

LA+ /B4 /C = /ECD+ /BCE + £C = 2d = 180°.

60° 60 ° ‘
D A <

Figure 86 Figure 87

Corollaries. (1) Any exterior angle of a triangle is congruent to
the sum of the interior angles not supplementary to it (e.g. £BCD =
LA+ £B).

(2¥ If two angles of one triangle are congruent respectively to two
angles of another, then the remaining angles are congruent as well.

(8) The sum of the two acute angles of a right triangle is congru-
ent to one right angle, i.e. it 75 90°.

 (4) In an isosceles Tight triangle, each acute angle is %d, i.e. 45°.

(5) In on equilateral triangle, each angle is 3d, i.c. 60°.

(6) If in a right triongle ABC (Figure 87) one of the acute angles
(for instance, ZB) 45 30°, then the leg opposile to it s congruent fo
a half of the hypotenuse. Indeed, noticing that the other acute angle
in such a triangle is 60° attach to the triangle ABC another triangle
ABD congruent to it. Then we obtain the triangle DB, whose

~ angles are 60° each. Such a triangle has to be equilateral (§45), and
hence DC = BC. But AC = 1DC, and therefore AC = 3BC.
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We leave it to the reader to prove the converse proposition: If
a leg is congruent o o half of the hypotenuse, then the acute angle
opposite to it s 30°. .

82. Theoremn. The sum of angles of a convex polygon hav-
ing n sides is congruent to two right angles repeated n — 2
tzmes.

Taking, inside the polygon, an arbitrary point O (Figure 88), con-
nect it with all the vertices. The convex polygon is thus partitioned
into as many triangles as it has sides, i.e. n. The sum of angles in
each of them is 2d. Therefore the sum of angles of all the triangles
is 2dn. Obviously, this quantity exceeds the sum of all angles of the
polygon by the sum of all those angles which are situated around the
point O. But the latter sum is 4d (§27). Therefore the sum of angles
of the polygon is

2dn — 4d = 2d(n — 2) = 180° x (n — 2).

<

Figure B8& Figure 89

A

Remarks. {1) The theorem can be also proved this way. From
any vertex A (Figure 89) of the convex polygon, draw its diagonals.
The polygon is thus partitioned into triangles, the number of which
is two less than the number of sides of the polygon. Indeed, if we
exclude from counting those two sides which form the angle A of
the polygon, then the remaining sides correspond to one triangle
each. Therefore the total number of such triangles is n — 2, where
n denotes the number of sides of the polygon. In each triangle, the
sum of angles is 2d, and hence the sum of angles of all the trianglss is
2d(n — 2). But the latter sum is the sum of all angles of the polygon.

{2} The same result holds true for any non-convex polygon. To

prove this, one should first partition it into convex ones. For this,
it suffices to extend all sides of the polygon in both directions. The
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infinite straight lines thus obtained will divide the plane into convex
parts: convex polygons and some infinite regions. The original non-
convex polygon will consist of some of these convex parts.

83. Theorem. If at each vertex of a convezx polygon, we
extend one of the sides of this angle, then the sum of the
exterior angles thus formed is congruent to 4d (regardless of
the number of sides of the polygon).

Each of such exterior angles (Figure 90) supplements to 2d one
of the interior angles of the polygon. Therefore if to the sum of all
interior angles we add the sum of these exterior angles, the result
will be 2dn (where n is the number of sides of the polygon). But the
sum of the interior angles, as we have seen, is 2dn — 4d. Therefore
the sum of the exterior angles is the difference:

2dn — (2db — 4d} = 2dn — 2dn + 4d = 4d = 360°.

>

Figure 90

EXERCISES

153. Compute the angle between two medians of an equilateral tri-
angle,
154. Compute the angle between bisectors of acute angles in a right
friangle.
155. Given an angle of an isosceles triangle, compute the other two.
Consider two cages: the given angle is {a} at the vertex, or (b) at the
base. .
156. Compute interior and exterior angles of an equiangular pen-
tagon. '

~ 157.* Compute angles of a triangle which is divided by one of its
bigectors into two isosceles triangles. Find all solutions.
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158. Prove that if two angles and the side opposite to the first of
them in one triangle are congruent respectively to two angles and
the side opposite to the first of them in another triangle, then such
triangles are congruent.

Remark: This proposition is called sometimes the AAS-test, or
SAA-test.

159. Prove that if a leg and the acute angle opposite to it in one
right triangle are congruent respectively to s leg and the acute an-
gle opposite to it in another right triangle, then such triangles are
congruent.

160. Prove that in & convex polygon, one of the angles between the
bisectors of two consecutive angles is congruent to the semisum of
these two angles.

161. Given two angles of a triangle, c&n‘mtruct; the third one.

162. Given an acute angle of a right triangle, construct the other
acute angle.

163. Construct a right triangle, given one of its legs and the acute
angle opposite to it.

164. Construct a triangle, given two of its angles and a side opposite
to one of them.

165. Construct an isosceles triangle, given its base and the angle at
the vertex.

166. Construct an isosceles triangle: (a) given the angle at the base,
and the altitude dropped to one of the lateral sides; (b) given the
lateral side and the altitude dropped to it.

167. Construct an equilateral triangle, given its altitude.

16‘8 Trisect a right angle (in other werds, construct the angle of
3 X 90° = 30°).

169. Construct a polygon congruent to a given one.

Hint: Diagonals partition a convex polygon into triangles.

170. Construct & quadrilateral, given three of its angles and the sides
containing the fourth angle.

Hint: Find the fourth angle.

171" How many acute angles can a convex polygon have?

172.* Find the sum of the “interior” angles at the five vertices of a
five-point star (e.g. the one shown in Figure 221), and the sum of
its five exterior angles (formed by extending one of the sides at each
vertex). Compare the results with those of §82 and §83.

173.* Following Remark (2) in §82, extend the results of §82 and
§83 to non-convex polygons. .
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13 Parallelograms and trapezoids

84. The parallelogram. A quadrilateral whose opposite sides
are pairwise parallel is called a parallelogram. Such & quadrilateral
(ABCD, Figure 91) is obtained, for instance, by intersecting any two
parallel lines KL and M N with two other parallel lines 12§ and PQ.

85. Properties of sides and angles.

Theorem. In any parallelogram, opposite sides are congru-
ent, opposite angles are congruent, and the sum of angles
adjacent to one side is 2d (Figure 92).

Drawing the diagonal BD we obtain two triangles: ABD and
BCD, which are congruent by the ASA-test because BED is their
common side, /1 = Z4, and /Z = /3 (as alternate angles formed
by a transversal intersecting parallel lines). It follows from the con-
gruence of the triangles that AB = CD, AD = BC, and LA = ZC.
The opposite angles B and D are also congruent since they are sums
of congruent angles.

Finally, the angles adjacent to one gide, e.g. the angles A and
I, add up to 2d since they are same-side interior angles formed by
a transversal intersecting parallel lines.

Corollary. If one of the angles of a parallelogram is right, then
the other three are also right.

Remark. The congruence of the opposite sides of a parallelogram
can be rephrasged this way parallel segments cut out by parollel lines
are congruent.

/L /N B C C M N D
P 1) >
B |U c
4

R AV D s 3

/ A D A P &« B

K M

Figure 91 Figure 92 Figure %3

Corollary. If two lines are parallel, then all points of each of
them are the same distance away from the other line; in short parailel
lines (AB and CD, Figure 93) are everywhere the same distance
apart.
© Indeed, if from any two points M and N of the line ©D, the
perpendiculars M P and N@ to AB are dropped, then these perpen-
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diculars are paralle] (§71), and therefore the quadrilateral MNQP is
a parallelogram. It follows that MN = N@Q, i.e. the points M and
N are are the same distance away from the line AB.

Remark. Given a parallelogram (ABCD, Figure 91), one some-
times refers to a pair of its parallel sides (e.g. AD and B(C) as & pair
of bases. In this case, a line segment (UV) connecting the parallel
lines PQ and RS and perpendicular to them is called an altitude
of the parallelogram. Thus, the corollary can be rephrased this way:
all altitudes between the same bases of a parallelogram are congruent
to each other. :

86. Two tests for parallelograms.

Theorem. If in a convex quadrilateral:

(1) opposite sides are congruent to each other, or

(2) two opposite sides are congruent and parallel,
then this quadrilateral is a parallelogram.

(1) Let ABCD (Figure 92) be a quadrilateral such that

AB=CD and BC =AD.

It is required to prove that this quadrilateral is a parallelogram, i.e.
that AB||CD and BC|AD.

Drawing the diagonal BD we obtain two triangles, which are
congruent by the SSS-test since BD is their common side, and AB =
CD and BC = AD by hypothesis. It follows from the congruence
of the triangles that Z1 = Z4 and Z2 = /3 (in congruent triangles,
congruent sides oppose congruent angles). This implies that AB||CD
and BC||AD (if alternate angles are congruent, then the lines are
parallel).

(2) Let ABCD (Figure 92) be & quadrilateral such that BC||AD
and BC = AD. It is required to prove that ABCD is a parallelo-
gram, l.e. that AB||CD.

The triangles ABD and BCD are congruent by the SAS-test
because BD is their common side, BC = AD (by hypothesis), and
£2 = /3 (as alternate angles formed by intersecting parallel lines by
a transversal). The congruence of the triangles implies that Z1 = /4,
and therefore AB|CD.

87. The diagonals and their property. :

Theorem. (1} If a quadrilateral (ABCD, Figure 94) is a par-
allelogram, then its diagonals bisect each other.

(2) Vice versa, in a quadriateral, if the diagonals bisect
each other, then this quadrilateral i3 a parallelogram.
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(1) The triangles BOC and AOD are congruent by the ASA-test,
because BC' = AD (as opposite sides of a parallelogram), £1 = £2

and £3 = Z4 (as alternate angles). It follows from the congruence
of the triangles that OA = QC and OD = OB.

B P C

A Q D

Figure %4

(2} If AQ = OC and BO = 0D, then the triangles AOD and
BOC are congruent (by the SAS-test). It follows from the congru-
ence of the triangles that £1 = £2 and #3 = Z4. Therefore BC||AD
(alternate angles are congruent) and BC = AD. Thus ABCD is a
parallelogram (by the second test).

88. Central symmetry. Two points A and A’ (Figure 95) are
called symmetric about a point O, if O is the midpoint of the line
segment AA’

Thus, in order to construct the point symmetric to a given point
A about another given point (), one should connect the pdints A
and O by a line, extend this line past the peint O, and mark on the
extension the segment 04! congruent to OA. Then 4’ is the required
point.

Two figures (or two parts of the same figure) are called symmetric
about a given point O, if for each point of one figure, the point
symmetric to it about the point O belongs {o the other figure, and
vice verse. The point O is then called the center of symmetry. The
symmetry itself is called central (a8 opposed to the azial symmetry
we encountered in §37}. If each point of a figure is symmetric to some
point of the same figure (about a certain center), then the figure is
said to have a center of symmetry. An example of such a figure is a
circle; its center of symmetry is the center of the circle.

Every figure can be superimposed on the figure symmet-
ric to it by rotating the figure through the angle 180° about
the center of symmeiry. Indeed, any two symmetric points (say,
A and A, Figure 95) exchange their positions under this rotation.

Remarks. (1} Two figures symmetric about a point can be super-
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imposed therefore by a motion within the plane, i.e. without lifting
them off the plane. In this regard central symmetry differs from axial
symmetry (§37), where for superimposing the figures it was necessary
to flip one of them over.

(2) Just like axial symmetry, central symmetry is frequently found
around us (see Figure 96, which indicates that each of the letters N
and S has & center of symmetry while £ and W do not).

N S

. X @ W | E
’ 3 | M
7 &y

Figure 95 Figure 96

89. In a parallelogram, the intersection point of the di-
agonals is the center of symmetry (Figure 94).

Indeed, the vertices A and C are symmetric about the intersection
point O of the diagonals (since AO = OD), and so are B and C:
Furthermore, for a point P on the boundary of the parallelogram,
draw the line PO, and let @@ be the point where the extension of
line past O meets the boundary. The triangles AQO and C'PO are
congruent by the ASA-test for /4 = /3 {as alternate), ZQOA =
ZPOC {as vertical), and AO = OC. Therefore QO = OP, ie. the
points P and ¢} are symmetric about the center O.

Remark. If a parallelogram is turned around 180° about the
intersaection point of the diagonals, then each vertex exchanges its
position with the opposite one (A with C, and B with D in Figure
94}, and the new position of the parallelogram will coincide with the
old one.

Most parallelograms do not possess axial syrmetry. In the next
section we will find out which of them do. :

90. The rectangle and its properties. If one of the angles of
a parallelogram is right then the other three are also right (§85). A
- parallelogram all of whose angles are right is called a rectangle.

Since rectangles are parallelograms, they possess all properties of .
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parallelograms (for instance, their diagonals bisect each other, and
the intersection point of the diagonals is the center of symmetry).
However rectangles have their own special properties.

B C !

Figure 97 Figure 98

(1} In a rectangle (ABCD, Figure 97), the diagonals are
congruent.

The right triangles ACD and ABD are congruent because they
have respectively congruent legs (AD is a common leg, and AB =
CD as opposite sides of a parallelogram). The congruence of the
triangles implies: AC = BD.

(2) A rectangle has two axes of symmetry. Namely, each
line pagsing through the center of symmetry and parallel to two op-
posite sides of the rectangle is its axis of symmetry, The axes of
symmetry of a rectangle are perpendicular to each other (Figure 98},

91. The rhombus and its properties. A parallelogram all
of whose sides are congruent i called a rhombus. Beside all the
properties that parallelograms have, rhombi also have the following
special ones.

S \

Figure 99 Figure-100

(1) Diagonals of a rhombus (ABCD, Figure 99) are perpen-
dicular and bisect the angles of the rhombus.

The triangles AOB and COB are congruent by the SSS-test be-
cause BO is their common side, AB = BC (since all sides of a
rhombus are congruent), and AO = OC (since the diagonals of any
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parallelogram bisect each other). The congruence of the triangles
implies that

/1=/2, ie. BD L AC, and 23 = /4,

i.e. the angle B is bisected by the diagonal BD. From the congruence
of the triangles BOC and DOC, we conclude that the angle C is
bisected by the diagonal (A, ete.

(2) Each diagonal of a rhombus is its azis of symmelry.

The diagonal BD (Figure 99) is an axis of symmetry of the rhom-
bus ABCD because by rotating ABAD about BD we can superim-
pose it onto ABCD. Indeed, the diagonal BD bisects the angles B
and D, and beside this AB = BC and AD = DC.

The same reascning applies to the diagonal AC.

92. The square and its properties. A square can be defined
ag a parallelogram all of whose sides are congruent and all of whose
angles are right. One can also say that a square is a rectangle all
of whose sides are congruent, or a rhombus all of whose angles are
right. Therefore a square possesses all the properties of parallelo-
grams, rectangles and rhombi. For instance, a square has four axes
of symmetry (Figure 100): two passing through the midpoints of op-
posite sides (as in a rectangle), and two passing through the vertices
of the opposite angles (as in a rhombus).

Figure 101

93. A theorem based on properties of parallelograms.

Theorem. If on one side of an angle {¢.g. on the side BC
of the angle ABC, Figure 101}, we mark segments congruent to
each other (DE = EF = ...}, and through their endpoinis,
we draw parallel lines (DM, EN, FP, ...} wuntil their in-
tersections with the other side of the angle, then the seg-
ments cut out on this side will be congruent to each other
(MN =NP=...). '
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Draw the auxiliary lines DK and DL parallel to AB. The trian-
gles DKFE and ELF are congruent by the ASA-test since DE = EF
(by hypothesis), and ZKDE = ZLEF and ZKED = /LFE (as cor-
responding angles formed by 2 transversal intersecting parallel lines).
From the congruence of the triangles, it follows that DK = EL. But
DK = MN and EL = NP (as opposite sides of parallelograms),

and therefore MN = NP.

Remark. The congruent segments can be alsoc marked starting
from the vertex of the angle B, i.e. ikethis: BD=DE=EF=....
Then the congruent segments on the other side of the angle are alse
formed starting from the veriex, i.e. BM = MN=NP=....

94. Corollary. The line (DE, Figure 102) passing through the
midpoint of one side (AB) of a triangle and parallel to another side
bisects the third side (BC).

Indeed, on' the side of the angle B, two congruent segments BD =
D A are marked and through the division points D and A, two parallel
lines DE and AC are drawn until their intersections with the side
BC. Therefore, by the theorem, the segments cut out on this side
are also congruent, i.e. BE 2= FC, and thus the point & biscets BC.

Remark. The segment connecting the midpoints of two sides of
a triangle is called & midline of this triangle.

8

Figure 102

95. The midline theorem.

Theorem. The line segment (DE, Figure 102) connecting the
midpoints of two sides of a triangle is parallel to the third
side, and s congruent to a half of .

To prove this, imagine that through the midpoint D of the side
AB, we draw a line parallel to the side AC. Then by the result of
§94, this line bisects the side BC and thus coincides with the line
DE connecting the midpoints of the sides AB and BC.

Furthermore, drawing the line EF||AD, we find that the side
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AC is bisected at the point /. Therefore AF = FC and beside this
AF = DE (as opposite sides of the parallelogram ADFEF). This
implies: DE = %AC.

96. The trapezoid. A quadrilateral which has two opposite
sides parallel and the other two opposite sides non-parallel is called
a trapegoid. The parallel sides (AD and BC, Figure 103) of a trape-
zoid are called its bases, and the non-parallel sides (AB and CD)
its lateral sides. If the lateral sides are congruent, the trapezoid is
called isosceles.

%
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Figure 103 Figure 104

97. The midline of a trapezoid. The line segment connecting
the midpoints of the lateral sides of a trapezoid is called its midline.

Theorem. The midline (EF, Figure 104} of a trapezoid is
parallel to the bases and is congruent to their semisum.

, Through the points B and F, draw a line until its intersection

with the extension of the side AD at some point G. We obtain
two triangles: BCF and GDF, which are congruent by the ASA-
test since CF = FD (by hypothesis), /BFC = ZGFD (as vertical
angles), and ZBCF = ZGDF (as alternate interior angleg formed by
a transversal intersecting parallel lines}. From the congruence of the
triangles, it follows that BF = F'G and BC = D{. We gee now that
in the triangle AB({, the line segment EF connects the midpoints of
two sides. Therefore (§95) we have: EF||AG and EF = 3(AD+DG),

or in other words, EF||AD and EF = £(AD + BC).

EXERCISES

174. Is a parallelogram considered a trapezoid?

175. How many centers of symmetry can a polygon have?
176. Can a polygon have two parallel axes of symmetry?
1'77. How many axes of symmetry can a quadrilateral have?
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Prove theorems:

178. Midpoints of the sides of a quadrilateral are the vertices of a
parallelogram. Determine under what conditions this parallelogram
will be (a) a rectangle, (b} a rhombus, (¢) a square.

179. In a right triangle, the median to the hypotenuse is congruent
to a half of it. ‘
Hint: Double the median by extending it past the hypotenuse.

180. Conversely, if a median is congruent to a half of the side it
bisects, then the triangle is right.

181. In a right triangle, the median and the altitude drawn to the
hypotenuse make an angle congruent to the difference of the acute
angles of the triangle.

182, In AABC, the bisector of the angle A meets the side BC at
the point D; the line drawn from D and parallel to CA meets AB
at the point E; the line drawn from F and parallel to BC meets AC
at F'. Prove that FA = F'C.

183. Ingide a given angle, another angle is constructed such that
its sides are parallel to thessides of the given one and are the same
distance away from them. Prove that the bisector of the constructed
angle lies on the bisector of the given angle.

184. The line segment connecting any point on one base of a trape-
zoid with any point on the other base is bisected by the midline of
the trapezoid.

185. The segment between midpoints of the diagonals of a trapezoid
is congruent to the semidifference of the bases.

186. Through the vertices of a triangle, the lines parallel to the
opposite sides are drawn. Prove that the triangle formed by these
lines consists of four triangles congruent te the given one, and that
each of its sides is twice the corresponding side of the given triangle.
187. In an isosceles triangle, the sum of the distances from each point
of the base to the lateral sides is constant, namely it is congruent to
the altitude dropped to a lateral side. :
188&. How does this theorem change if points on the extension of the
base are taken instead?

189. In an equilateral triangle, the sum of the distances from an
interior point to the sides of this triangle does not depend on the
point, and is congruent to the altitude of the triangle.

190. A parallelogram whose diagonals are congruent is a rectangle.

~191. A parallelogram whose diagonals are perpendicular to each
other is a rhombus.
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192. Any parallelogram whose angle is bisected by the diagonal is a
rhombus.

193. From the intersection point of the diagonals of a rhombus,
perpendiculars are dropped to the sides of the rthombus. Prove that
the feet of these perpendiculars are vertices of a rectangle.

194. Bisectors of the angles of a rectangle cut out a square.

195. Let A’ B’ ' and D’ be the midpoints of the sides CD, DA,
AB, and BC of a square. Prove that the segments AA, CC, DD
and BB’ cut out a square, whose sides are congruent to 2/5th of any
of the segments. :

186. Given a square ABCD. On its sides, congruent segments AA/,
BB’ CC' and DD’ are marked. The points A, B/, (', and D’ are .
connected consecutively by lines. Prove that A’B'C'D’ is a square.

Find the geometric locus of:

197. The midpoints of all segments drawn from a given point to
varicus points of a given line.

198. The points equidistant from two given parallel lines.

199. The vertices of triangles having a common base and congruent
altitudes.

Construction problems

£200. Draw a line parallel to a given one and situated at a given
distance from it.

201. Through a given point, draw a line such that its line segment,
contained between two given lines, is bisected by the given point.
208. Through a given point, draw a line such that its line segment,
contained between two given parallel lines, is congruent to a given
segment.

203. Between the sides of a given angle, place a segment congruent
to & given segment and perpendicular to one of the sides of the angle.
204. Between the sides of a given angle, place a segment congruent
to a given segment and parallel to a given line intersecting the sides
of the angle. '

205. Between the sides of a given angle, place a segment congruent
to a given segment and such that it cuts congruent segments on the
sides of the angle.

206. In a triangle, draw a line parallel fo its bage and such that the
line segment contained between the lateral sides is congruent to the
sum of the segments cut out on the lateral sides and adjacent to the
base.
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98. Problem. To divide a given line segment (AB, Figure 105)
into o given number of congruent parts {e.g. into 3).

From the endpoint A, draw a line AC that forms with AB some
angle. Mark on AC, starting from the point A, three congruent
segments of arbitrary length: AD = DE = EF. Connect the point
F with B, and draw through E and [2 lines EN and DM parallel
to £B. Then, by the results of §93, the segment AB is divided by
the points M and N into three congruent parts.

, c
F
E
4]
A M N B
Figure 105 Figure 106

99. The method of parallel translation. A special method
of solving congtruction problems, known as the method of parallel
translation, is baged on properties of parallelograms. It can be best
explained with an example.

Problem. Two touns A and B (Figure 106) are situated on op-
posite sides of a canal whose bonks VD and EF are parallel straight
lines. At which point should one build o bridge MM' across the canal
in order to make the path AM + MM' + M'B between the towns the
shortest possible?

To facilitate the solution, imagine that all points of the side of
the canal where the town A is situated are moved downward (“trans-
lated”) the same distance along the lines perpendicular to the banks
of the canal as far as to make the bank C'D merge with the bank
EF. In particular, the point A is translated to the new position
A" on the perpendicular AA’ to the banks, snd the segment AA’ is
congruent to the bridge MM’ Therefore AAM'M is a parallelo-
gram (§86 (2)), and hence AM = A’'M’. 'We conclude that the sum
AM + MM’ + M'B is congruent to AA’ + A’M' 4+ M'B. The latter
sum will be the shortest when the broken line A’M'B is straight.
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Thus the bridge should be-built at that point X on bank EF where
the bank intersects with the straight line A’B.

100. The method of reflection. Properties of axial symmetry
can also be used in solving construction problems. Sometimes the
required construction procedure is easily discovered when one folds a
part of the diagram along a certain line (or, equivalently, reflects it
in this line as in a mirror) so that this part occupies the symmetric
position on the other side of the line. Let us give an example.

Problem. Two towns A and B (Figure 107) are situated on the
same side of a raslroad CD which has the shape of a straight line.
At which point on the railroad should one build a station M in order
to make the sum AM + MB of the disionces from the towns to the
station the smallest possible?

Reflect the point A to the new position A’ symmetric about the
line C'D. The segment. A’M is symmetric to AM about the line C'D,
and therefore A’M = AM. We conclude that the sum AM + MB is
congruent to A’M + M B. The latter sum will be the smallest when
the broken line A’M B is straight. Thus the station should be built
at the point X where the railroad line C' D intersects the straight line
A'B.

The same construction solves yet another problem: given the line
CD, and the points A and B, find a point M such that ZAMC =
/BMD.

Figure 107 Figure 108

101. Translation. Suppose that a figure {say, a triangle ABC,
Figure 108) is moved to a new position (A'B'C’) in a way such that
all segments between the points of the figure remain parallel to them-
selves (i.e. A'B||AB, B'C'||BC, etc.). Then the new figure is called
a translation of the original one, and the whole motion, too, is
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called translation. Thus the sliding motion of a drafting triangle
(Figure 76) along a straightedge (in the construction of parallel lines
described in §74) is an example of translation.

Note that by the results of §86, if AB||A'B’ and AB = A'B’ (Fig-
ure 108), then ABB'A’ is a parallelogram, and therefore AA'[|BB’
and AA’ = BB’ Thus, if under translation of a figure, the new posi-
tion A’ of one point A is known, then in order to translate all other
points B, C, etc., it suffices to construct the parallelograms AA'B'B,
AA'C'C, ete. In other words, it suffices to comstruct line segments
BB, CC, etc. parallel to the line segment AA’, directed the same
way as A4’ and congruent to it.

Vice versa, if we move a figure {e.g. AABC) to a new position
(AA'B'CY) by constructing the line segments A4, BB, CC', ete.
which are congruent and parallel to each other, and are also directed
the same way, then the new figure is a translation of the old one.
Indeed, the quadrilaterals AA’B'B, AA'C'C, ete. are parallelograms,
and therefore all the segments AR, BC, etc. are moved to their new
positions A’B’, B'(Y, ete. remaining parallel to themselves.

Let us give one more example of a construction problem solved
by the method of translation.

102. Problem. To construct o quadrilateral ABCD (Figure
109), given segments congruent to itz sides and to the line EF con-
necting the midpoints of two opposite sides.

B

F
b | WC
. c
Figure 109

To bring the given lines close to each other, translate the sides
AD and BC, i.e. move them in a way such that they remain parallel
to themselves, to the new positions ED’ and EC’. Then DAED' and
C'EBC are parallelograms, and hence the segment DI is congruent
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and parallel to AE, and the segment C'C’ congruent and parallel to
BE. But AE = EB, and therefore DD’ = CC' and DD'||CC". As
a consequence, the triangles DD'F and CC'F are congruent by the
SAS-test (since DI = C(', DF = FC, and ZD'DF = Z0'CF).
The congruence of the triangles implies that ZD'FD = ZC'FC,
hence the broken line D' FC' turns out to be straight, and therefore
the figure ED'FC’ is a triangle. In this triangle, two sides are known
(ED' = AD and EC' = BC), and the median EF to the third side
is known too. The triangle EC’'D’ is easily recovered from these
data. (Namely, double EF by extending it past F' and connect the
obtained endpoint with I’ and ¢\ In the resulting parallelogram,
all sides and one of the diagonals are known. )

Having recovered AED'CY, coustruct the triangles D'DF and
C'CF, and then the entire quadrilateral ABCD.

EXERCISES

207. Construct a triangle, given:

(a) its base, the altitude, and a lateral side;

(b) its base, the altitude, and an angle at the base;

(c) an angle, and two altitudes dropped to the sides of this angle;
(d) a side, the sum of the other two sides, and the altitude dropped
to one of these sides;

(e) an angle at the base, the altitude, and the perimeter.

208. Construct a quadrilateral, given three of its sides and both
diagonals.

209. Construct a parallelogram, given:

{(a) two non-congruent sides and a diagonal;

(b) one side and both diagonals;

(¢) the diagonals and the angle between them;

(d) a side, the altitude, and a diagonal. (Is this always possible?}

210. Construct a rectangle, given a diagonal and the angle between
the diagonals.

211. Construct a rhombus, given:

(a) its side and a diagonal;

(b) both diagonals;

(¢) the distance between two parallel sides, and & diagonal;
{d} an angle, and the diagonal passing through its vertex;
{e) a diagonal, and an angle opposite to it;

(f) a diagonal, and the angle it forms with one of the sides.

212. Construct a square, given its diagonal.
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213. Construct a trapezoid, given:

(a) its base, an angle adjacent to it, and both lateral sides (there can
be two solutions, one, or none);

(b) the difference between the bases, a diagonal, and lateral sides;
(c) the four sides (is this always possible?);

(d) a base, its distance from the other base, and both diagonals (when
is this possible?);

(e) both bases and both diagonals (when is this possible?).

214.* Construct a square, given:

{a) the sum of a diagonal and a side;

{b) the difference of a diagonal and an altitude.

215.% Construct a parallelogram, given its diagonals and an altitude.

216.* Construct a parallelogram, given its side, the sum of the di-
agonals, and the angle between them.

217.* Construct a triangle, given:

{a) two of its sides and the median bisecting the third one;

(b} its base, the altitude, and the median bisecting a lateral side.
218.* Construct a right triangle, given:

(a} its hypotenuse and the stun of the legs;

(b) the hypotenuse and the difference of the legs. Perform the re-
search stage of the solutions.

219. Given an angle and a point inside it, construct a triangle with
the shortest perimeter such that one of its vertices is the given point
and the other two vertices lie on the sides of the angle.

Hint: use the method of reflection.

220.* Construct a quadrilateral ABCD whoge sides are given as-
suming that the diagonal AC bisects the angle A.

221.% Given positions A and B of two billiard balls in a rectangular
billiard table, in what direction should one shoot the ball A so that
it reflects Cozzseczztwely in the four sides of the bzllllald and then hits
the ball B?

222. Construct a trapezoid, given all of its sides.

Hint: use the method of translation.

£223.* Construct a trapezoid, g1ve21 one of its angles, both diagonals,
and the midline.

224 Construct a quadrilateral, given three of its sides and both
angles adjacent to the unknown side.



Chapter 2

THE CIRCLE

1 Circles and chords

103. Preliminary remarks. Obviously, through a point (A4,
Figure 110), it is possible to draw as many circles as one wishes:
their centers can be chosen arbitrarily. Through two points (A and
B, Figure 111), it is also possible to draw unlimited number of circles,
but their centers cannot be arbitrary since the points equidistant
from two points A and B must lie on the perpendicular bisector
of the segment AB (i.e. on the perpenélcul&r to the segment AB
passing through its midpoint, §56). ‘

Let us find out if it is possmle i;{} draw a circle through three
points.

b
“o

Figure 110 Figure 111

104. Theorem. Through any three points, not lying on the
same line, it is possible to draw a circle, and such a circle
18 unique.

83
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Through three points A, B, C (Figure 112), not lying on the
same line, (in other words, through the vertices of a triangle ABC),
it is possible to draw a circle only if there exists a fourth point O,
which is equidistant from the points A, B, and . Let us prove that
‘such a point exists and is unique. For this, we take into account
that any point equidistant from the points A and B must lie on the
perpendicular bisector M N of the side AB (§56). Similarly, any point
equidistant from the points B and C must lie on the perpendicular
bisector P@Q of the side BC. Therefore, if a point equidistant from
the three points A, B, and C exists, it must lie on both M N and PQ,
which is possible only when it coincides with the intersection point
of these two lines. The lines MN and P(} do intersect (since they
are perpendicular to the intersecting lines AB and BC, §78). The
intersection point O will be equidistant from A, B, and C. Thus, if
we take this point for the center, and take the segment QA (or OB,
or OC) for the radius, then the circle will pass through the points
A, B, and C. Since the lines M N and P can intersect only at cne
point, the center of such a circle is unique. The length of the radius
is also unambiguous, and therefore the circle in question is unique.

s
Q N

N

Figure 112

Remarks. (1) If the points A, B, and C (Figure 112} lay on
the same line, then the perpendiculars MN and P@ would have
been parallel, and therefore could not intersect. Thus, through three
peints lying on the same line, it is not possible to draw a circle.

~ {2} Three or more points lying on the same line are often called
collinear.
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Corollary. The point O, being the same distance away from A
‘and C, has to also lie on the perpendicular bisector RS of the side
AC. Thus: three perpendicular bisectors of the sides of a triangle
intersect at one poindt.

105. Theorem. The diameter (AB, Figure 113), perpendic-
ular to a chord, bisects the chord and each of the two arcs
subtended by it.

Fold the diagram along the diameter AB so that the left part of
the diagram falls onto the right one. Then the left semicircle will be
identified with the right semicircle, and the perpendicular KC will
merge with KD. Tt follows that the point C, which is the intersection
of the semicircle and K'C, will merge with D. Therefore KC' = KD,

TN ST TN TN

BC=BD, AC=AD.

A F
c_1 >0
o v O
K
G\B_,/D A\E/B
Figure 113 Figure 114

106. Converse theorems. (1) The diameter (AB), bisecting
a chord (CD), is perpendicular to this chord and bisects the
arc subtended by it (Figure 113).

(2) The diameter (AB), bisecting an arc (CBD), is perpen-
dicular to the chord subtending the asrc, and bisects it.

Both propositions are easily proved by reductio ad absurdum.

107. Theoren. The ares {AC and BD, Figure 114} contained
between parallel chords (AB and CD) are congruent.

Fold the diagram along the diameter EF L AB. Then we can
conclude on the basis of the previous theorem that the point A merges
~ with B, and the point C with D. Therefore the arc AC is identified
with the arc BD, i.e. these arcs are congruent.

108. Problems. {1) To bisect a given arc (AB, Figure 115).

Connecting the ends of the arc by the chord AB, drop the per-
pendicular to this chord from the center and extend it up to the
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intersection point with the arc. By the result of §106, the arc AB is
bisected by this perpendicular.

However, if the center is unknown, then one should erect the
perpendicular to the chord at its midpoint.

Figure 115 Figure 116

(2) To find the center of a given circle (Figure 116).

Pick on the circle any three points A, B, and C, and draw two
chords through them, for instance, AB and BC. Erect perpendicu-
lars M N and PQ to these chords at their midpoints. The required
center, being equidistant from A, B, and C, has to lie on M N and
P¢}. Therefore it is located at the intersection point O of these
perpendiculars.

109. Relationships between arcs and chords.
Theorems. In a disk, or in congruent disks:

(1) if two arcs are congruent, then the chords subtending
them are congruent and equidistant from the center;

(2) if two arcs, which are smaller than the semicircle, are
not congruent, then the greater of them is subtended by the
greater chord, and the greater of the two chords is closer to
the center.

(1) Let an arc AB {Figure 117) be congruent to the arc CD; it
is required to prove that the chords AB and CD are congruent, and
that the perpendiculars OF and OF to the ch{}rds dropped from the
center are congruent too.

Rotate the sector AOB about the center O so that the radius OA
coincides with the radius OC. Then the arc AB will go along the arc
(D, and since the arcs are congruent they will coincide. Therefore
the chord AP will coincide with the chord C D, and the perpendicular

“OF will merge with OF (since the perpendicular from a given point

to a given line is unique), i.e. AB == CD and OF = OF.
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(2) Let the arc AB (Figure 118} be smaller than the arc CD,
and let both arcs be smaller than the semicircle; it is required to
prove that the chord AB is smaller than the chord C'D, and that the
perpendicular OF is greater than the perpendicular OF.

Figure 117 Figure 118

Mark on the arc CD the arc C'K congruent to the arc AB and
draw the auxiliary chord K, which by the result of part (1) is con-
gruent to and is the same distance away from the center as the chord
AB. The triangles COD snd C'OK have two pairs of respectively
congruent sides (since they are radii), and the angles contained be-
tween these sides are not congruent. In this case {§50}, the greater
angle (i.e. ZCOD) is opposed by the greater side. Thus CD > CK,
and therefore CD > AB.

In order to prove that OF > OF, draw QL L CK and take into
account that OF = OL by the result of part (1), and therefore it
suffices to compare OF with (L. In the right triangle OF M (shaded
in Figure 118), the hypotenuse OM is greater than the leg OF. But
OL > OM, and hence OL > OF, i.e. OF > OF.

The theorem just proved for one disk remains true for congru-
ent disks because such disks differ from one another only by their
position.

110. Converse theorems. Since the previous theorems address
all possible mutually exclusive cases of comparative size of two arcs
of the same radius {assuming that the arcs are smaller than the
semicircle), and the obtained conclusions about comparative size of
subtending chords or their distances from the center are mutually
exclusive too, the converse propositions have to hold true as well.
Namely:

In a disk, or in congruent disks:

{1) congruent chords are equidistant from the center and
subtend congruent arcs;
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(2) chords equidistant from the center are congruent and
subtend congruent arcs,

(3) the greater one of two non-congruent chords is closer
to the center and subtends the greater arc,

(4) among two chords non-equidistani to the center, the
one which is closer to the center subiends the grealer are.

These propositions are easy to prove by reductio ad absurdum.,
For instance, to prove the first of them we may argue this way. If
the given chords subtended non-congruent arcs, then due to the first
direct theorem the chords would have been non-congruent, which
contradicts the hypothesis. Therefore congruent chords must sub-
tend congruent arcs. But when the arcs are congruent, then by the
direct theorem, the subtending chords are equidistant from the cen-
ter.

111. Theorem. A diameter is the greatest of all chords.

Connecting the center O with the ends of any chord AB not
passing through the center (Figure 119}, we obtain a triangle AOB
such that the chord AB is pne of its sides, and the other two sides
are radii. By the triangle inequality (§48) we conclude that the chord
AB is smaller than the sum of two radii, while a diameter is the sum
of two radii. Thus a diameter ig greater than any chord not passing
through the center. But since a diameter is also a chord, one can say
that diameters are the greatest of all chords.

A C 8

Figure 119 Figure 120

EXERCISES

225. A given segment is moving, remaining parallel to itself, in such
& way that one of its endpoints lies on a given circle. Find the
geometric locus described by the other endpoint.

" £26. A given segment is moving in such & way that its endpoints slide
along the sides of a right angle. Find the geometric locus described
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by the midpoint of this segment.

227. On a chord AB, two points are taken the same distance away
from the midpoint C of this chord, and through these points, two
perpendiculars to AB are drawn up to their intersections with the
circle. Prove that these perpendiculars are congruent.

Hint: Fold the diagram along the diameter passing through C.

228. Two intersecting congruent chords of the same eircle are divided
by their intersection point into respectively congruent segments.

229. In a disk, two chords CC’ and D) perpendicular to a diameter
AB are drawn. Prove that the segment M M’ joining the midpoints
of the chords CD and C'D' is perpendicular to AB.

230. Prove that the shortest of all chords, passing through a point 4
taken in the interior of a given circle, is the one which is perpendicular
to the diameter drawn through A.

231. Prove that the closest and the farthest points of a given circle
from a given point lis on the secant passing through this point and
the center.

Hint: Apply the triangle inequality.

232. Divide a given arc into 4, 8,16, ... congruent parts.

233. Construct two arcs of the same radius, given their sum and
difference.

234. Bisect a given circle by another circle centered at a given point.
235. Through a point inside a disk, draw a chord which is bisected
by this point.

236. Given a chord in a disk, draw anocther chord which is bisected
by the firat one and makes a given angle with it. (Find out for which
angles this is possible.) .

23%7. Construct a circle, centered at a given point, which cuts off a
chord of a given length from a given line. |

238. Construct a circle of a given radius, with the center lying on
one side of & given angle, and such that on the other side of the angle
it cuts out a chord of a given length.

2 Relative positions of a line and a circle

112. A line and a circle can obviously be found only in one of
the following mutual positions:

(1) The distance from the center to the line is greater than the
radius of the circle (Figure 120}, i.e. the perpendicular OC dropped
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to the line from the center O is greater than the radius. Then the
point C of the line is farther away from the center than the points of
the circle and lies therefore outside the disk. Since all other points
of the line are even farther away from O than the point C (slants
are grater than the perpendicular), then they all lie outside the disk,
and hence the line has no common points with the circle.

(2) The distance from the center to the line is smaller than the
radius (Figure 121). In this case the point C lies inside the disk, and
therefore the line and the circle intersect.

(3) The distance from the center to the line equals the radius
(Figure 122), i.e. the point € is on the circle. Then any other point
D of the line, being farther away from O than C, lies outside the disk.
In this case the line and the circle have therefore only one common
point, namely the one which is the foot of the perpendicular dropped
from the center to the line.

Such a line, which has only one common point with the circle, is
called a tangent to the circle, and the common point i3 called the
tangency point.

T
A C D B
A c B
(o] o]
Figure 121 Figure 122

113. We see therefore that out of three possible cases of dispo-
sition of a line and a circle, tangency takes place only in the third
case, i.e. when the perpendicular to the line dropped from the center
is a radius, and in this case the tangency point is the endpoint of the
radius lying on the circle. This can be also expressed in the following
way:

(1) if a line (AB) is perpendicular to the radius (OC) at
its endpoint (C) lying on the circle, then the line is tangent
to the circle, and vice versa:

(2) if a bine is tangent to a circle, then the radius droun
to the tangency point is perpenddicular to the line.

114. Problem. 7o construct a tangent to o given circle such that
it is parallel to a given ling AB (Figure 123).
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Drop to AB the perpendicular OC from the center, and through
the point D, where the perpendicular intersects the circle, draw
EF|AB. The required tangent is EF. Indeed, since OC L AB
and EF|AB, we have EF 1L (D, and a line perpendicular to a
radius at its endpoint lying on the circle, is a tangent.

E A E
9 D < lo
o D
F B
A M B
Figure 123 Figure 124

115. Theorem. If a tangent is parallel to a chord, then
the tangency point bisects the arc subtended by the chord.

Let a line AB be tangent to a circle at a point M (Figure 124)

N

and be parallel to a chord €' D; it is required to prove that CM=MD.

The diameter M F passing through the tangency point M is per-
pendicular to AB and therefore perpendicular to CD. Thus the
A

i
diameter bisects the arc CM D (§105), i.e. CM=MD.

EXERCISES -

239. Find the geometric locus of points from which the tangents
drawn to a given circle are congruent to a given segment.

240. Find the geometric locus of centers of circles described by a
given radius and tangent to a given line.

241. Two lines passing through a point M are tangent to a circle
at the points A and B. The radius OB is extended past B by the
segment BC = OB. Prove that ZAMC =3£4ZBMC,

242. Two lines passing through a point M are tangent to a circle
at the points A and B. Through a point C taken on the smaller of
the arcs AB, a third tangent is drawn up to its intersection points D
and E with M A and M B respectively. Prove that (1} the perimeter
of ADME, and (2) the angle DOE (where O is the center of the
circle) do not depend on the position of the point C.

Hint: The perimeter is congruent to MA+MB; LDOFE = %—EAOB.
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243. On a given line, find a point closest to a given circle.

244. Construct a cirele which has a given radius and is tangent to a
given line at a given point.

245. Through a given point, draw a circle tangent to a given line at
another given point.

246. Through a given point, draw a circle that has a given radius
and is tangent to a given line.

247. Construct a circle tangent to the sides of a given angle, and to
one of them at a given point.

24 8. Construct a circle tangent to two given parallel lines and passing
through a given point lying between the lines.

249. On a given line, find a point such that the tangents drawn from
this point to a given circle are congruent to a given segment.

3 Relative positions of two circles

116. Definitions. Two,circles are called tangent to each other
if they have ouly one common point. Two circles which have two
common points are said to intersect each other..

Two circles cannot have three common pointg since if they did,
there would exist two circles passing through the same three points,
which is impossible (§104).

We will call the line of centers the infinite line passing through
the centers of two circles.

117. Theorem. If two circles (Figure 125) have a common
point (A) situated outside the line of centers, then they have
one more common point (A') symmetric to the first one with
respect to the line of centers, (and hence such circles intersect).

Figure 125

Indeed, the line of centers containg diameters of each of the circles
and is therefore an axis of symmetry of each of them. Thus the point
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A’ symmetric to the common point A with respect to this axis of
symmetry (and situated on the other side of it) must lie on each of
these two circles.

The axis of symmetry is the perpendicular bisector of the segment
AA’ connecting two symmetric points A and A% Thus we obtain:

Corollary. The common chord (AA!, Figure 125) of two inter-
secting circles is perpendicular to the line of centers and is bisected
by . .
118. Theorem. If two circles have a common puoint (A,
Figures 126, 127) situated on the line of centers, then they
are tangent to each other.

The circles cannot have another common point outside the line of
centers, because then they would also have a third commmon point on
the other side of the line of centers, in which case they would have
to coincide. The circles cannot have another common point on the
line. of centers. Indeed, then they would have two common points
on the line of centers. The common chord connecting these points
would have been a common diameter of the circles, and two circles
with a common diameter coincide.

Figure 126 Figure 127

Remark. The tangency of two circles is called external if the
circles are situated outside one another (Figure 126), and internal
if one of them is situated inside the other (Figure 127).

119. Converse theorem. If two circles are tangent (at a
point A, Figures 126, 127), then the tangency poini lies on the
line of centers.

The point A cannot lie outside the line of centers, because other-
wise the circles would have one more common point, which contra-
dicts the hypothesis of the theorem.

Corollary. Two tangent circles have the same tangent line ot
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their tangency point, because the line M N (Figures 126, 127) passing
through the tangency point A and perpendicular to the radius OA
is also perpendicular to the radius O/ A.

120. Various cases of relative positions of two circles.
Demnote radii of the two circles by the letters R and R’ (assuming
that R > R’), and the distance between the centers by the letter d.
Examine relationships between these quantities in various cases of
mutual position of the circles. There are five such cases, namely:

Figure 128 Figure 129 Figure 130
R 2 R
TdT R dl R}
Figure 131 Figure 132

(1) The circles lie outside each other without tangency (Figure
128); in this case obviously d > R+ R

(2) The circles have an external tangency (Figure 129); then d =
R + R! since the tangency point lies on the line of centers.

(3) The circles intersect (Figure 130); then d < R + R/, and at
the same time d > R — R/, since in the triangle OAQ!, the side
OC' congruent to d is smaller than the sum, but greater than the
difference of the other two sides, congruent to the radii R and A

{4) The circles have an internal tangency (Figure 131); in this
case d = R — R/, because the tangency point lies on the line of
centers.

= (B) One circle lies inside the other without tangency (Figure 132);
then obviously d < R— R In the special case when d = 0, the centers
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of both circles merge (such circles are called concentric).

Remark. We let the reader to verify the converse theorems:

(1) If d > R + R, then the circles lie outside each other.

(2) If d = R+ R/, then the circles are tangent externally.

(3) If d < R+ R' and at the same time d > R — R/, then the
circles intersect.

(4) If d = R — R/, then the circles are tangent internally.

(5) If d < R — R, then the circles lie one inside the other.

All these propositions are easily proved by contradiction.

121. Rotation about a point. Let a plane figure, for instance
AABC {Figure 133), be tied rigidly to some point O of the plane.
Imagine that all points of the triangle, including its vertices, are
connected by segments to the point O, and that the whole figure
formed by these segments, remaining in the plane of the triangle, is
moving about the point O, say, in the direction shown by the arrow.
Let A'B'¢C’ be the new position occupied by the triangle ABC after
some time. Since we also assume that AABC does not change its
shape, we have: AB = A'B/, BC = B'C', and CA = C'A". Such
a transformation of a figure in ity plane is called a rotation about
a point, and the point O itself is called the center of rotation.
Thus, in other words, a rotation about a center (J i3 a rigid motion
of & plane figure such that the distance from each point to the center
remains unchanged: AQ = A’O, BO = B'O, C0O = C'O, etc. Ob-
viously, all points of the rotated figure describe concentric arcs with
the ecommon center at the point O, whose radii are the distances of
the corresponding points from the center.

o]

Figure 133

Notice that central angles (Figure 133) corresponding to the con-
centric arcs, described in equal times by different points of a rotated
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figure, are congruent to each other:
ZAOA' = LBOB = £COC’ =

Indeed, the triangles AOB and A'OB’ are congruent by the SSS-test,
and therefore £LAOB = £A'OB’. Adding the angle BOA’ to each
of them, we find: £LAQOA' = BORE' Similarly one can prove that
£BOB' = COC', etc.

The common angle of rotation of all the radii is called the rota-
tion angle of the figure.

Vice versa, in order to construct the rotation of a plane figure
(e.g. the rotation AA'B'C’ of AABC) about a given point O through
a-given rotation angle, it suffices to construct concentric arcs A4/
BB/, C(, etc., directed the same way, and corresponding to the
angles LZAQA', /BOB', ZCO(, ..., congruent to the given rotation
angle.

EXERCISES

250. Find the geometric locus of centers of circles tangent to a given
circle at a given point.

251. Find the geometric locus of centers of circles described by a
given radius and tangsnt to a glven circle (consider two cases: of
external and internal tangency).

252. A secant to two congruent circles, which is parallel to the line
of centers OO, meets the first circle at the points A and B, and the
second one at the points A’ and B Prove that A4' = BB’ = OO0,

253.* Prove that the shortest segment joining two non-intersecting
circles lies on the line of centers.

Hint: Apply the triangle inequality.

254. Prove that if through an intersection point of two circles, we
draw all secant segments without extending them to the exterior of
the disks, then the greatest of these secants will be the one which is
parallel to the line of centers.

255. Construct a circle passing through a given point and tangent
to a given circle at another given point.

256. Construct a circle tangent to two given parallel lines and to a
given disk lying between them.

257, Construct a circle that has a given radius, is tangent to a given
disk, and passes through a given point. (Consider three cases: the
given point lies (&) outside the disk, {(b) on the circle, (¢) inside the
disk.)
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4 Inscribed and some other angles

122. Inscribed angles. An angle formed by two chords drawn
from the same point of a circle is called inscribed. Thus the angle
ABC in each of Figures 134-136 is inscribed.

B B B
o] (o] (0]
A A A
¢ 5~ © D
Figure 134 Figure 135 Figure 136

An angle is said to intercept an arc if it is contained in the
interior of the angle and connects its sides. Thus the inseribed angle
ABC in Figure 135 intercepts the arc ADC.

123. Theorem. An inscribed angle measures a half of the
subtended arc. This theorem should be understood as follows: an
inscribed angle contains as many angular degrees as a half of the arc
it intercepts contains circular degrees.

In the proof of the theorem, consider the following three cases.

(1) The center O (Figure 134) lies on a side of the inscribed
angle ABC. Drawing the radius AO,-we obtain AAOB such that
OA = OB (as radii}, and hence ZABO = ZBAO. The angle AOC
is exterior with respect to this triangle, and ig congruent therefore
to the sum of the angles ABO and BAQ, which is twice the angle
ABQ. Thus the angle ABO is congruent to a half of the central
angle A0C. But the angle AOC is measured by the arc AC, i.e. it
contains as many angular degrees, as the are AC contains circular
degress. Therefore the ingcribed angle ABC is measured by a half
of the arc AC,

(2) The center O lies in the interior of the inscribed angle ABC
(Figure 135). Drawing the diameter BD we partition the angle ABC
into two angles, of which (according to part (1)) one is measured by
a half of the arc AD, and the other by a half of the arc DC. Thus

the angle ABC is measured by the sum % AD +% DC, which is

Vel

TN N
congruent to $(AD + DC}, i.e. to 5 AC.
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(3) The center O lies in the exterior of the inscribed angle ABC.
Drawing the diameter 8D we have

LABC = LABD — LCBD.

But the angles ABD and CBD are measured (according to part
(1)) by halves of the arcs AD and C'D. Therefore the angle ABC

N

is measured by the difference % AD —% CD, which is congruent to
TN i N

3(AD ~ CD), ie. to 3 AC.

m

Figure 137 Figure 138

124. Corollaries. (1) All inscribed angles intercepting the
same arc are congruent to each other (Figure 137), because each
of them measures a half of the same arc. If the measure of one of
such angles is denoted «, then one may say that the disk segment
AmB encloses the angle «.

(2) Any inscribed angle intercepling a diometer is right (Figure
138), because such an angle measures a half of the semicircle, and
therefore contains 90°.

125. Theorem. The angle (ACD, Figure 140) formed by a
chord and a tangent measures a half of the intercepted arc,
(i.e. of the arc DC confained in the interior of the angle).

Let us assume first that the chord CD passes through the center
0, i.e. that it iz a diameter (Figure 139). Then the angle ACD is
right {§113) and contains therefore 90°. But a half of the arc OmD
also contains 90° since the arc C'mD, being a semicircle, contains
180°. Thus the theorem holds true in this special case.

Consider now the general case when the chord CD does not pass
through the center (see Figure 140, where ZAC D is acute)}. Drawing
the diameter, CFE we have:

LACD = LACE - LDCE.
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The angle ACFE, being the angle formed by a tangent and a diameter,
measures a half of the arc CDE. The angle DCE, being inscribed,
measures a half of the: arc DF. Ti’herefom the angle ACD is measured

by the difference 3 G‘DE -3 DE i.e. by a half of the arc CD.

Similarly one can prove thm an obtuse angle (BCD, Figure 140),
also formed by a tangent and a chord, measures a half of the arc
OnED. The only distinétion in the proof is that this angle is not
the difference, but the sum of the right angle BCFE and the inscribed
angle ECD.

Figure 139 Figure 140

Remark. One may think of this theorem as a degenerate case of
the previpus theorem about inscribed angles. Namely, consider the
angle between a tangent and a chord, e.g. £BCD in Figure 140,
and pick & point I on the zzzterc*epfed arc. Then ZBCD becomes
the sum of #BCD' and the inscribed angle IYCD. The arc CnD
intercepted by £BCD also becomes the sum of the corresponding
ares C'D' snd D'nD. Now let the point ) move along the circle
toward the point €. When D' approsaches C, the position of the
secant ray CD' approaches the position of the tangent CB. Then

measures of CD' and ZBCD' both approach zero, and measures of

TN P

D'nD and £D'C D approach those of CnD and ZBC D respectively.
Thus the property of the inscribed angle D'CD to measure a half
PN

of D'nD, transforms into the property of the angle CBD between a
tangent and a chord to measure a half of the intercepted arc CnD.

126. Theoremn. (1) An angle (ABC, Figure 141) whose vertex
lies inside a disk, is measured by the semisum of two arcs
(AC and DE), one of which is intercepted by this angle, and
the other by the angle vertical to it.

(2) An angle (ABC, Figure 142), whose vertex lies outside
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a disk, and whose sides intersect the circle, is measured by
the semidifference of the two inlercepted arcs (AC and ED),

Figure 141 Figure 142

Drawing the chord AD (on each diagram), we obtain AABD for
which the angle ABC in question is exterior, when its vertex lies
inside the disk, and interior, when it lies outside the disk. In the

- first case therefore ZABC =5 ZADC + ZDAE, and in the second

case LABC = LADC — £ZDAE. But the angles ADC and DAEF, as
inscribed, are measured by halves of the arcs AC and DE. Thus in

PN e
the first case the angle ABC' is measured by the sum 5 AC +1 DE

NN

congruent to %(AC‘ + DE), and in the second case by the difference
PN PN AT P
% AC —3% DE congruent to $(AC — DE).

EXERCISES

Computation problems

258. Compute the degree measure of an inscribed angle intercepting
an arc congruent to 1—12th part of the circle.

259. A disk is partitioned into two disk segments by a chord dividing
the circle in the proportion 5 : 7. Compute the angles enclosed by
these segments.

260. Two chords intersect at an angle 36°15'30”. Express in degrees,
minutes, and seconds the two arcs intercepted by this angle and the
angle vertical to it, if one of these arcs measures 2/3 of the other.

261. The angle hetween two tangents drawn from the same point to
acircle is 25°15". Compute the arcs contained between the tangency
points. :

Y
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262. Compute the angle formed by a tangent and a chord, if the
chord divides the circle in the proportion 3 : 7.

268. Two circles of the same radius intersect- at the angle 2d/3.
Express in degrees the smaller of the arcs contained between the
intersection points.

Remark: The angle between two intersecting arcs is defined as the
angle between the tangent lines to these arcs drawn at the intersec-
tion point.

264. A tangent is drawn through one endpoint of a diameter and a
secant through the other, so that they make the angle 20°30". Com-
pute the smaller of the arcs contained between the tangent and the
secant.

Find the geometric locus of:

265. The feet of the perpendiculars dropped from a given point A
to lines passing through another given point B.

266. The midpoints of chords passing through a point given inside
a disk.

267. Points from which a given circle is seen at a given angle (i.e.
the angle between two tangents to the given circle drawn from the
point is congruent to the given angle).

Prove thecorems:

268. If two circles are tangent, then any secant passing through
the tangency point cuts out on the circles opposed arcs of the same
angular messure. :

289. Prove that if through the tangency point of two circles two
secants are drawn, then the chords connecting the endpoints of the
secants are parallel.

270. Two circles intersect at the points 4 and B, and through A, &
secant is drawn intersecting the circles at the points C and D. Prove
that the measure of the angle CBD is constant, i.e. it is the same
for all such secants.

271, In a disk centered at O, a chord AB is drawn and extended
by the segment BC congruent to the radius. Through the point
C and the center O, a secant CD is drawn, where D denotes the
second intersection point with the circle. Prove that the angle AOD
is congruent to the angle ACD tripled.

272. Through a point A of a circle, the tangent and a chord AB
are drawn. The diameter perpendicular to the radius OB meets
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the tangent and the chord (or its extension) at the points C' and D
respectively. Prove that AC = CD.

273. Let PA and PB be two tangents to a circle drawn from the
same point P, and let BC be a diameter. Prove that CA and OP
are paraliel.

274. Through one of the two intersection points of two circles, a
diameter in each of the circles is drawn. Prove that the line con-
necting the endpoints of these diameters passes through the other
intersection point.

275. A diameter AB and a chord AC form an angle of 30°. Through
C, the tangent is drawn intersecting the extension of AB at the point
D. Prove that AACD is isosceles.

5 Construction problems.

127. Problem. 1o construct a right triangle given its hypotenuse
a and a ley b (Figure 143).

c
D
M a N o
A B
A B
b vc
Figure 143 Figure 144

On a line M N, mark AB = a and describe a semicircle with AB
as a diameter. (For this, bisect AB, and take the midpoint for the
center of the semicircle and $AB for the radius.) Then draw an arc
of radius congruent to b centered at the point A (or B}. Connect the
intersection point C of the arc and the semicircle, with the endpoints
of the diameter ARB. The required triangle is ABC, since the angle
C is right (§124}, @ is the hypotenuse, and b is a leg.

128. Problem. To erect a perpendicular to o ray AB (Figure
144) at the endpoint A without extending the ray beyond this point.

- Take outside the line AB any point O such that the circle, cen-
tered at O and of radius congruent to the segment O A, intersects the
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ray AB at some point C. Through this point C, draw the diameter
C'D and connect its endpoint D with A. The line AD is the required
perpendicular, because the angle A is right (as inscribed intercepting
a diameter). '

129. Problem. Through a given point, to draw a tangent to a
given circle.

Consider two cases: -

(1) The given point {(C, Figure 145) lies on the circle itself. Then
draw the radius to this point, and at its endpoint C, erect the perpen-
dicular AB to this radius {e.g. as explained in the previous problem).

A c B

Figure 145 Figurs 146

(2) The given point (A, Figure 146) lies outside the disk bounded
by the given circle. Then, connecting A with the center O, construct
the circle with AOQ as a diameter. Through the points B and B’
at which this circle intersects the given one, draw the lines AB and
AB' These lines are the required tangents, since the angles OBA
and OB’ A are right (as inscribed intercepting a diameter).

Corvoliary. Two tangent segments, druun fo a circle from o
point outside the disk bounded by it, are congruent and form congru-
ent angles with the line connecting this point with the center. This
follows from the congruence of the right triangles OBA and OB'A
(Figure 146).

130. Problem. Given two circles, to construct a common tangent
(Figure 147).

(1) Analysis. Suppose that the problem has been solved. Let
AR be a common tangent, A and B the tangency points. Obviously,
if we find one of these points, e.g. A, then we can easily find the
other. Draw the radii OA4 and O'B. These radii, being perpendicular
to the common tangent, are parallel to each other. Therefore, if
we draw through O’ the line O'C parallel to BA, then O'C will be
perpendicular to OC. Thus, if we draw a cirele of radius OC centered
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at O, then O'C will be tangent to it at the point . The radius of
this auxiliary circle is OA — CA = 0A— O B, i.e. it is congruent to
the difference of the radii of the given circles.

Figure 147 Figure 148

Construction. Thus the required construction can be performed
as follows. Describe the circle centered at O of radius congruent to
the difference of the given radii. From O/, draw a tangent O'C' to this
circle (as described in the previous problem). Through the point C,
draw the radius OC and extend it beyond C up to the intersection
point A with the given circle. Finally, through the point A, draw the
line AB parallel to CO".

Research. The construction is possible when the center O’ lies in
the exterior of the auxiliary circle. In this case we obtain two common
tangents to the circles, each parallel to one of the two tangents from
the point O’ to the auxiliary circle. These two common tangents are
called external.

For the point O to be in the exterior of the auxiliary circle,
the segment OC has to be greater than the difference of the radii
of the given circles. According to the results of §120, this is true
unless one of the given disks contains the other. When one of the
circles lies inside the other, obviously, ne common tangent is possible.
When the circles have an internal tangency, the perpendicular to the
line of centers erected at the tangency point is, evidently, the only
common tangent of the circles. Otherwise, i.e. when neither of the
disks contains the other, there exist, as we have seen, two external
common tangents. '

When the two given circles.do not intersect, i.e. when O¢Y is .
greater than the sum of the given radii, there also exist two inter-
nal common tangents {Figure 148) which can be constructed as
follows.

(2) Analysis. Suppose that the problem has been solved, and
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let AB be such a common tangent. Draw the radii OA and O’'B to
the tangency points A and B. These radii, being perpendicular to
the common tangent, are parallel to each other. . Thus, if we draw
from O the line O'C||BA and extend the radius JA beyond A to its
intersection with O’C at the point ', then OC will be perpendicular
to 0'C. Therefore the auxiliary circle described about the center O
by the radius OC will be tangent to the line O'C' at the point C.
The radius of the auxiliary circle is OA+ AC = OA+ O'B, i.e. it is
congruent to the sum of the radii of the given circles.

Construction. Thus the construction can be performed this
way: draw the circle centered at O of radius congruent to the sum of
the given radii. From the point () draw a line O'C tangent to the
auxiliary circle at the point C. Connect the tangency point ' with
O, and through the intersection point A of OC' with the circle, draw
the line AB||CO.

The second internal common tangent is parallel to the other tan-

gent from O’ to the auxiliary circle and is constructed similarly.

When the segment OO ig congruent to the sum of the given
radii, the two given circles have an external tangency (§120). In this
case, the perpendicular to the line of centers erected at the tangency
point is, evidently, the only internal common tangent of the circles.
Finally, when the two disks overlap, no internal tangents exist.

131. Problem. On a given segment AB, to construct a disk
segment enclosing a given angle (Figure 149).

Analysis. Suppose that the problem has been solved, and let
AmB be a disk segment enclosing the given angle «, i.e. such that
any angle ACB inscribed in it is congruent to . Draw the auxiliary
line AE tangent to the circle at the point A. Then the angle BAE
formed by the tangent and the chord AB, is also congruent to the
inscribed angle ACB, since both measure a half of the arc AnB.
Now let us take into account that the center O of the circle lies on
the perpendicular bisector DO of the chord AB, and &t the same
time on the perpendicular (AO) to the tangent (AF) erected at the
tangency point. This suggests the following construction.

Construction. At the endpoint 4 of the segment AB, construct
an angle BAE congruent to o. At the midpoint of AB erect the
perpendicular DO, and at the point A, erect the perpendicular to
AE. Taking the intersection point O of these perpendiculars for the
center, describe the circle of radius AO.

Proof. Any angle inscribed into the disk segment AmB is mea-
sured by a half of the arc AnJ3, and the half of this arc is also the
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measure of ZBAFE = . Thus AmB is the required disk segment.

Remark. On Figure 149, the disk segment AmB enclosing the
angle o, i8 constructed on the upper side of the line AB. Another
such disk segment can be constructed symmetric to AmB about the
axis AB. Thus, one could say that the geometric locus of points, from
which a given line segment AB is seen al a given angle o, consists of |
the arcs of two disk segments, each enclosing the given angle, which
are symmetric to each other about the aris AB.

c
m
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Figure 149 Figure 150

132. The method of geometric loci. Many construction prob-
lems can be successfully approached using the concept of geometric
locus. This method, known already to Pleto (4th century B.C.), can
be described as follows. Suppose that a proposed problem consists in
finding a point which has to satisfy certain conditions. Discard one
of these conditions; then the problem becomes under-determined:
it may admit infinitely many solutions, i.e. infinitely many points
satisfying the remaining conditions. These points form a geometric
locus. Construct this locus if possible. Then reinstall the previously
discarded condition, but discard another one; the problem will again
have infinitely many solutions which will form another geometric lo-
cus. Construct it if possible. A point satisfying all the conditions of
the original problem belongs to both geometric loci, i.e. it must lie
in their intersection. The construction will be possible or impossible
depending on whether the loci intersect or not, and the problem will
have as many solutions as there are intersection points. Let us illus-
trate this method by an example, which also shows that sometimes
adding auxiliary lines to a diagram can be useful.

7 133. Problem. 7o construct a triangle, given ils base a, the
angle at the vertex A, and the sum s of the lateral sides.
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Let ABC (Figure 150) be the required triangle. In order to add
to the diagram the given sum of lateral sides, let us extend BA past
A and mark on it the segment BM = s. Connecting M with C, we
obtain an auxiliary triangle BMC. If we manage to construct this
triangle, then we can easily construct the required triangle ABC.
Indeed, note that the triangle CAM is isosceles (AC = AM), and
hence A can be found as the intersection of BM with the perpendic-
ular bisector of M.

The congtruction of the triangle BMC reduces to finding the
point M. Since the triangle CAM is isosceles, we have LM =
/MCA = L/BAC. We see that the point M must satisfy two
conditions: 6]) it has distance s from B, and (2) the angle at which
the segment BC is seen from M is congruent to —%éé. Thus the con-
struction of M reduces to intersecting two geometric loci such that
we know how to construct each of them. The problem has no solu-
tion when these loci do not intersect, and has one or two solutions
depending on whether the loci are tangent to each other or intersect.
On our diagram, we obtain two (congruent!) triangles ABC and
A'B(C satisfying the requirements of the problem.

Sometimes a problem requires finding a line (rather than a point)
satisfying several conditions. Discarding one of the conditions, we
will obtain infinitely many lines satisfying the remaining conditions.
Tt may happen that all such lines can be described in terms of a cer-
tain curve (for instance, as all lines tangent to a certain cirele). Dis-
carding another condition and reinstalling the previously discarded
one, we will obtain infinitely many lines again, which may define
some other. curve. Constructing, if possible, both curves we then
determine the required line. Let us give an example.

134. Problem. 7o draw a secant of two given disks O and &,
so that the segments of the secant contained inside the disks are con-
gruent respectively to two given segments a and a

If we take into account only one of the requirements, for example,
that the part of the secant inside the disk O is congruent to a, then
we obtain infinitely many secants which have to be equidistant from
the center of the disk (since congruent chords are equidistant from
the center). Therefore, if we construct inside O a chord congruent
to ¢ and then describe the circle concentric to O of radius congruent
to the distance from the chord to the center, then all the secants
in question will be tangent to this auxiliary circle. Similarly, taking
into account only the second condition, we will see that the required
secant must be tangent to the second auxiliary circle concentric to
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@' Thus the problem reduces to constructing a common tangent to
two circles.

EXERCISES

Prove theorems

276. Given two circles with external tangency, prove that the com-
mon tangent passing through the tangency point, bisects the seg-
ments of external common tangents bounded by the tangency points.

277. To two circles tangent externally at a point A, a common exter-
nal tangent BC' is drawn (where B and C are the tangency points).
Prove that the angle BAC is right.

Hint: Draw through A a common tangent and examine the triangles
ABD and ADC.

Construction problems

278. Given two points, construct a line such that the perpendiculars
dropped from these points to this line have given lengths.

279. Construct & line making a given angle with a given line and
tangent to a given circle. (How many solutions are there?)

280. From a point outside a disk, construct a secant such that its
segment inside the disk is congruent to a given segment.

281. Construct a circle that has a given radius, and is tangent to a
given line and a given circle.

282.* Construct a circle tangent to a given line and tangent to a
given circle at a given point (two solutions).

283. Construct a circle tangent to a given circle and tangent to a
given line at a given point (two solutions).

284. Construct a circle that has a given radius and cuts out chords
of given lengths on the sides of a given angle.

285, Construct a disk tangent to two given disks, and to one of them
at a given point. (Consider three cases: the required disk contains
(1) both given disks, (2) one of them, {3) none of them.)

286. Construct a circle tangent (externally or internally) to three
given congruent circles.

287.* Into a glven circle, inscribe three congruent disks tangent to
each other and to the given circle.

288.* Through a given point inside a disk, draw a chord such that
the difference of its segments is congruent to a given segment.
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Hint: Draw the concentric circle passing through the given point,
and construct in this circle a chord of the given length.

289. Through an intersection point of two circles, draw a secant such
that its segment inside the given disks is congruent to a given length.
Hint: Construct a right triangle whose hypotenuse is the segment
between the centers of the given disks, and one of the legs is congruent
to a half of the given length.

290. From & point outside a disk, draw a secant ray such that its
external and internal parts are congruent.

Hint: Let O be the center of the disk, R its radius, and A the given
point. Construct AAOB, where AB = R, OB = 2R. If C is the
midpoint of the segment OB, then the line AC is the required one.

291. Construct a circle tangent to two given non-parallel lines (1) if
the radius is given, (2) if instead dne of the tangency points is given.

292. On a given line, find a point from which a given segment is seen
at a given angle. '

293. Construct a triangle, given its base, the angle at the vertex,
and the altitude.

29/. Construet a triangle, given one of its angles and two of its
altitudes, one of which is drawn from the vertex of the given angle.

295. Construct a tangent to the arc of a given sector such that the
segment of the tangent betwesn the extensions of the radii bounding
the sector is congruent to a given segment.

Hint: Reduce the problem to the previous one.

296. Construct a triangle, given its base, the angle at the vertex;
and the median bisecting the base.

297. Given the positions of two segments a and b in the plane, find
& point from which the segment o is seen at a given angle o, and the
segment b at a given angle £,

298. In =a given triangle, find a point from which its sides are seen
at the same angle.

299.* Construct a triangle, given its angle at the vertex, and the
altitude and the median drawn to the base.

Hint: Double the median extending it past the base, connect the
endpoint with the vertices at the base, and consider the parallelogram
thus formed.

200.* Construct a triangle, given its base, an angle adjacent to the
base, and the angle between the median drawn from the vertex of
the first given angle and the side to which this median is drawn.

801. Construct a parallelogram, given its diagonals and an angle.
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302.* Construct a triangle, given its base, its angle at the vertex,
and the sum or the difference of the other two sides.

303. Construct a quadrilatersl, given its diagonals, two adjacent
sides, and the angle between the two remaining sides.

304.> Given three points A, B, and C, construct a line passing
through A such that the distance between the perpendiculars to this
line dropped from the points B and (' is congruent to a given seg-
ment.

6 Inscribed and circumscribed polygofls

135. Definitions. If all vertices of a polygon (ABCDE, Figure
151) lie on a circle, then the polygon ig called inscribed into the
circle, and the circle is called circumseribed about the polygon.

If all sides of & polygon (MNPQ, Figure 151) are tangent to a
circle, then the polygon is called circumscribed about the circle,
and the circle is called inscribed into the polygon.

Figure 151 Figure 1532

136. Theorems. (1) About any triangle, a circle can be
circumscribed, and such a circle is unique.

(2} Into any triangle, a cirele can be inscribéd, and such
a circle is unique. |

{1) Vertices A, B, and C of any triangle are non-collinear. As we
have seen in §104, any three such points lie on a circle, and such a
circle is unique.

~ (2) If a circle tangent to all sides of a triangle ABC exists (Figure
152), then the center must be a point equidistant from these sides.
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Let us prove that such a point exists. The geometric locus of points
equidistant from the sides AB and AC is the bisector AM of the
angle A (§58). The geometric locus of points equidistant from the
sides BA and B{' is the bisector BN of the angle B. These two
bisectors will, evidently, intersect inside the triangle at some point O.
This point will be equidistant from all the sides of the triangle, since
it lies in both geometric loci. Thus, in order to inscribe a circle into
a triangle, bisect two of its angles, say A and B, take the intersection
point of the bisectors for the center, and take for the radius any of
the perpendiculars OP, 0Q, or OR, dropped from the center {0 the
gides of the triangle. The circle will be tangent to the sides at the
points P, 3, and R, since at these points the sides are perpendicular
to the radii at their endpoints lying on the circle (§113). Ancther
such sn inscribed circle cannot exist, since two bisectors can intersect
only at one point, and from a point only one perpendicular to a line
can be dropped.

Remark. We leave it to the reader to verify that the center of the
circumscribed circle lies inside the triangle if and only if the triangle
is scalene. For an cbtuse triangle, the center lies outside it, and for a
right triangle at the midpoint of the hypotenuse. The center of the
inscribed circle always lies inside the triangle.

Corollary. The point O (Figure 152), being equidistant from
the sides CA and €'B, must lie on the bisector of the angle /. There-
fore bisectors of the three angles of a triangle intersect at one point.

Figure 153
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137. Exscribed circles. The circles tangent-to one side of a
triangle and to the extensions of two other sides (such circles lie
outside the triangle, Figure 153) are called exscribed. Bach triangle
has three such circles. To construct them, draw bisectors of the
exterior angles of the triangle ABC, and take their intersection points
for the centers. Thus, the center of the circle inscribed into the angle
A, i8 the point O, i.e. the intersection point of the bisectors BO and
CO of the exterior angles not supplementary to A. The radius of
this circle is the perpendicular dropped from O to any of the sides
of the triangle.

138. Inscribed quadrilaterals. {1) In a convex inscribed
quadrilateral, the sum of opposite angles is congruent to
two right angles.

(2) Conversely, if a conver quadrilateral has the sum of
opposite angles congruent to two right angles, then it can
be circumscribed by a circle.

(1) Let ABCD (Figure 154) be an inscribed convex quadrilateral;
1t is required to prove that

LB+ 4D =2d and LA+ £C = 2d.

Since the sum of all the four angles of any convex quadrilateral is
4d (§82), then it suffices to prove only one of the required equalities. -
Let us prove for example that #B + ZD = 2d.

The angles B and D, as inscribed, are measured: the former by a
half of the arc ADC, a,nd the latter by a half of the arc A ABC. T}:mre—

fore the sum ZB + ZD is measured by the sum 5 ADC —l—% ABO

Eamt P
which is congruent to %{ADC + ABCY, ie. a half of the whole
circle. Thus ZB + £ZD = 180° = 2d.

(2) Let ABCD (Figure 154) be a convex quadrilateral such that
LB+ /D = 2d, and therefore LA+ Z(C = 2d. It is required to prove
that a circle can be circumscribed about such a quadrilateral.

Through any three vertices of it, say through A, B, and C, draw
a circle (which is always possible). The fourth vertex D must lie on
this circle. Indeed, if it didn’t, it would lie either inside the disk, or
outside it. In either case the angle J? would not measure a half of
the arc ABC, and therefore the sum /B + ZD would not measure
the semisum of the arecs ADC and ABC. Thus this sum would differ
from 2d, which contradicts the hypothesis.

~Corollaries. (1) Among all parallelograms, rectangles are the
only ones which can be circumscribed by a circle.
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(2) A trapezoid can be circumscribed by a circle only if it is isosce-
les. _

139. Circumscribed quadrilaterals. In a circumscribed
quadrilateral, the sums of opposite sides are congruent.

Let ABCD (Figure 155) be a circumscribed quadrilateral, i.e.
the sides of it are tangent to a circle. It is required to prove that
AB+CD =BC+ AD.

Denote the tangency points by the letters M, N, P, and . Since
two tangents drawn from the same point to a circle are congruent, we
have AM = AQ, BM = BN, CN = CP, and DP = D¢}. Therefore

AM 4+ MB+ CP + PD =A@ + @D + BN + NC,
ie. AB+CD=AD+ BC.

B c
B ; P
c M
A D
D A )
Figure 154 Figure 155

EXERCISES

305. Into a given circle, inscribe a triangle whose angles are given.

306. About a given circle, circumscribe a triangle whose angles are
given.

207. Construct a triangle, given the radius of its inscribed circle, the
angle at the vertex, and the altitude.

308. Into a given circle, inscribe a triangle, given the sum of two of
its sides and the angle opposite to one of them.

309. Tnto a given circle, inscribe a quadrilateral, given one of its
sides, and both angles not adjacent to it.

£10. Inscribe a circle into a given rhombus.

311. Into a given sector, inscribe a circle tangent to the radii and
the arc bounding the sector.
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312 Into an equilateral triangle, inscribe three disks which are
pairwise tangent to each other, and each of them is tangent to two
sides of the triangle. :

313, Construct a quadrilateral assuming that it can be circumseribed
by a circle, and that three of its sides and a diagonal are given.
314. Construct a rhombus, given its side and the radius of the in-
scribed circle.

315. Circumscribe an isosceles right triangle about a given circle.
#16. Construct an isogceles triangle, given its base and the radius of
the inscribed circle.

317 Through two given points on a circle, construct two parallel
chords with a given sum.

#18.* On a circle circumscribed about an equilateral AABC, a point
M is taken. Prove that the greatest of the segments M A, MB, MC
is congruent to the sum of the other two.

319.” The feet of perpendiculars dropped from a point of a circle to
the sides of an inscribed triangle lie on the same line (called Simson’s
line). s

Hint: A proof is based on properties of inscribed angles (§123), and
angles of inscribed quadrilaterals (§138).

7 Four concurrency points in a triangle

140. We have seen that: .

(1) the three perpendicular bisectors to the sides of a triangle
intersect at one point (which is the center of the circumseribed circle
and is often called the circumcenter of the triangle);

(2) the three bisectors of the angles of a triangle intersect at one
point (which is the center of the inscribed circle, and often called
incenter of the triangle}.

‘The following two theorems point out two more remarkable points
in a triangle: (3) the intersection point of the three altitudes, and
(4) the intersection point of the three medians.

141. Theorem. Three altitudes of a triangle intersect at
one point.

Through each vertex of AABC (Figure 156}, draw the line par-
allel to the opposite side of the triangle. Then we obtain an auxiliary
triangle A’B'C’ whose sides are perpendicular to the altitudes of the
given triangle. Since C'B = AC = BA’ (as opposite gides of parallel-
ograms), then the point B is the midpoint of the side A’C’. Similarly,
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¢ is the midpoint of A’B’ and A of B’C’ Thus the altitudes AD,
BE, and CF of AABC are perpendicular bisectors to the sides of
NA'B'C’, and such perpendiculars, as we know from §104, intersect
al one point.

Remark. The point where the three altitudes of a triangle in-
tersect is called its orthocenter. The reader may prove that the
orthocenter of an acute triangle lies inside the triangle, of an obtuse
triangle outside it, and for a right triangle coincides with the vertex
of the right angle.

c’ B A’

Figure 156 Figure 157

142. Theorem. The three medians of a triangle intersect
at one point; this point cuts e third part of each median
measured from the corresponding side.

In AABC (Figure 157), take any two medians, e.g. AE and BD,
intersecting at a point O, and prove that

OD = %BD, and OF = %AE.

For this, bisect OA and OB at the points F and G and consider the
quadrilateral DEGF. Since the segment FG connects the midpoints
of two sides of AABO, then FG||AB and FG = $AB. The segment
DE, too, connects the midpoints of two sides of AABC, and hence
DE|AB and DE = £ AB. From this we conclude that DE||FG and
DE = FQG, and therefore the quadrilateral DEGF is a parallelogram
(§86). It follows that OF = OF and OD = OG, i.e. that OF = %AE

and OD = %BD. ,
Tf we consider now the third median and one of the medians AE

or BD, then we similarly find that their intersection point cuts from
each of them a third part measured from the foot. Therefore the
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third median must intersect the medians AE and BD at the very
same point O,

Remarks. (1) It is known from physics that the intersection point
of the medians of a triangle is the center of mass (or centroid) of
it, also called barycenter; it always lies inside the triangle.

(2) Three {or more} lines intersecting at one point are called
concurrent. Thus we can say that the orthocenter, barycenter,
incenter and circumcenter of a triangle are concurrency points of its
altitudes, medians, angle bisectors, and perpendicular bisectors of its
sides respectively.

EXERCISES

320. Construct a triangle, given ifs base and two medians drawn
from the endpoints of the base.

321. Construct a triangle, given its three medians.

522. Into a given circle, inscribe a triangle such that the extensions
of its angle bisectors intersec{ the circle at three given points.

323. Into a given circle, ingcribe a triangle such that the extensions
of its altitudes intersect the circle at three given points.

324 Construct a triangle given itg circumscribed circle and the
three points on it at which the altitude, the angle bisector and the
median, drawn from the same vertex, intersect the circle.

325.* Prove that connecting the feet of the altitudes of a given tri-
angle, we obtain another triangle for which the altitudes of the given
triangle are angle bisectors.

326.F Prove that the barycenter of a triangle lies on the line segment
connecting the circumcenter and the orthocenter, and that it cuts a
third part of this segment measured from the circumcenter.
Remark: This segment is called Euler’s line of the triangle.

3277 Prove that for every triangle, the following nine points lie on
the same circle (called Euler’s circle, or the nine-point circle of
the triangle): three midpoints of the sides, three feet of the altitudes,
and three midpoints of the segments connecting the orthocenter with
the vertices of the triangle.

328.% Prove that for every triangle, the center of Euler’s circle lies
on Euler’s line and bisects it.

Remark: Moreover, according to Feuerbach’s theorem, for every
triangle, the nine-point circle is tangent to the inscribed and oll three
exscribed circles.



Chapter 3

SIMILARITY

1 Mensuration

143. The problem of mensuration. So far, comparing two
segments, we were able to determine if they are congruent, and if they
are not then which of them ig greater (§6). We have encountered
this task when studying relationships between sides and angles of
triangles (§844, 45), the triangle inequality (§§48-50), and some other
topics (§§51-53, 109-111, 120). Yet such comparison of segments
does not provide an accurate idea about their magnitudes.

Now we pose the problem of establishing precisely the concept of
length of segments and expressing lengths by means of numbers.

M
A | | | ! | B
| ; ! 1 |
Ci I |D
Figure 158

144. A common measure of two segments is a third segment
such that it is contained in each of the first two a whole number of
times with no remainder. Thus, if a segment AM (Figure 158) is
contained 5 times in AB and 3 times in CD, then AM is a common
measure of AB and CD. One can similarly talk about common
megsures of two arcs of the game radius, of two angles, and more
generally of any two quantities of the same denomination.

Evidently, if the segment AM is a common measure of the seg-

117
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ments AB and CD, then dividing AM into 2, 3, 4, etc. congruent
parts we obtain smaller common measures of the same segments.
Therefore, if two segments have a common measure, one can say
that they have infinitely many common measures. One of them will
be the greatest.

145. The greatest common measure. Finding the greatest
common measure of two segments is done by the method of con-
secutive exhaustion, quite similar to the method of consecutive
division which is used in arithmetic for finding the greatest common
factor of two whole numbers. The method (also called the Euclidean,
algorithm) is based on the following general facts.

a a
P—— R
; t
b b M
Figure 159 Figure 160

5

(1) If the smaller one of two segments (o and b, Figure 159)
is contained in the greater one a whole number of times
with no remainder, then the grealest common measure of
the two segments is the smaller segment.

Let a segment b be contained in a segment o exactly, say, 3 times.
Since b i3, of course, contained in itself once, then b is 8 common
measure of ¢ and b. This common measure is the greatest since no
segment, greater than 5 can be contained in & a whole mumber of
times.

(2) If the smaller one of two segments (b in Figure 160}
is contained in the greater one (a) a whole number of times
with some remainder {r}, then the greatest common measure
of these segments (if it exists) must be the greatest common
measure of the smaller segment {b) and the remainder (r).

Let, for instance,
g=b+b+b+r

We can derive from this equality two conclusions:

(i) If there exists a segment fitting some number of times (i.e.
without remainder) into b and some number of times into r, then
it also fits a whole number of times into a. For instance, if some
segment is contained in b exactly 5 times, and in r exactly 2 times,
then it is contained in a exactly 54545 + 2 = 17 times.
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(ii) Conversely, if there exists a segment fitting several times,
without remainder, into a and b, then it also fits without remainder
into . For example, if some segment is contained in a exactly 17
times, and in b exactly 5 times, then it is contained exactly 15 times
in that part of the segment a which is congruent to 3b. Therefore in
the remaining part of a, i.e. in 7, it is contained 17 — 15 = 2 times
exactly.

Thus the two pairs of segments: a and b, and b and r, have the
game common measures (if they exist), and therefore their greatest
common measures also have to be the same.

These two theorems should also be supplemented by the following
Archimedes’ axiom:

However long is the greater segment (a), and however
short is the smaller one (b), subtracting consecutively 1,2,3,
ete. times the smaller segment from the greater one, we will
always find thot after some m-th subtraction, either there 15
ne remasnder left, or there is a remainder which is smaller
than the smaller segment (b). In other words, it is always possible
to find a sufficiently large whole number m such that either mb = q,
or mh < a < (m+ 1)b.

A E B
1 | | ! ]
1 I | 1 1
C F D
——t
Figure 161

146. The Euclidean algorithm. Suppose it is required to find
the greatest common measure of two given segments AB and CD
(Figure 161).

Using a cornpass, exhaust the greater segment; by marking on it
the smaller one as many times as possible. According to Archimedes’
axiom, one of two outcomes will occur: either (1) CD will fit into
AB several times with no remainder, and then according to the 1st
theorem the required measure will be €D, or (2} there will be a
remainder EB smaller than CD (as in Figure 181}. According to
the second theorem, the problem will then reduce to finding the
greatest common measure of the two smaller segments, namely C'D
and the remainder EB. To find it, do as before, i.e. exhaust CL
by marking on it EB as many times as possible. Again, one of two
outcomes will occur: either (1) EB will fit into CD several times
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with no remainder, and then the required measure will be EB, or
(2) there will be a remainder FD smaller than EB (as in Figure
161). The problem is then reduced to finding the greatest common
measure of another pair of smaller segments, namely £B. and the
second remainder F'D.

Continuing this process further, we can encounter one of the fol-
lowing two cases:

(i) after some exhaustion step there will be no remainder left, or

(ii) the process of consecutive exhaustion will continue indefinitely
(assuming that we can mark segments as small as desired, which is
possible, of course, only theoretically).

In the former case, the last remainder will be the greatest common .
measure of the given segments. One can similarly find the greatest
common measure of two arcs of the same radius, of two angles, etc.

In the latter case, the given segments cannot have any common
measure. To see this, let us assume that the given segments AB and
CD have a common measure. This meagure, as we have seen, must
be contained a whole number of times not only in AB and CD, but
also in the remainder EB, and therefore in the second remainder
FD, and in the third, and in the fourth, and so on. Since these
remainders become smaller and smaller, each of them will contain
the common measure fewer times than the previous one. For in-
stance, if £ B contains the common measure 100 times (in general m
times), then F D containg it fewer than 100 times, i.e. 99 at most.
The next remainder contains it fewer than 99 times, i.e. 98 at most,
and so on. Since the decreasing sequence of positive whole numbers:
100,99, 98,... (in general m,m —1,m —2,...) terminates (however
large m is), then the provess of consecutive exhsustion must termi-
nate as well, i.e. no remainder will be left. Thus, if the process of
consecutive exhaustion never ends, then the given segments cannot
have a common measure.

147. Commensurable and incommensurable segments.
Two segments are called commensurable if they have a common mea-
sure, and incommensurable if such a common measure does not exist.

Existence of incommensurable segments cannot be discovered ex-
perimentally. In.the process of endless consecutive exhaustion we
will always encounter a remainder so small that it will appear to fit
the previous remainder a whole number of times: limitations of our
instruments (compass) and our senses (vision} will not allow us to
determine if there is any remainder left. However, incommensurable
segments do exist, as we will now prove.
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148. Theorem. The diagonal of a square is incommensu-
rable to its side.

Since the diagonal divides the square into two isesceles right trian-
gles, then this theorem can be rephrased this way: the hypotenuse
of an isosceles right triangle is incommensurable to its leg.

Let us prove first the following property of such a triangle: if
we mark on the hypotenuse AC (Figure 162) of AABC the segment
AD congruent to the leg, and draw DE L A{, then the right triangle
DEC thus formed will be isosceles, and the part BE of the leg BC
will be congruent to the part DC of the hypotenuse.

To prove this, draw the line B and consider angles of the trian-
gles DEC and BED. Since the triangle ABC is right and isosceles,
then Z1 = Z4, and therefore £1 = 45°. Thersfore in the right trian-
gle DEC we have Z2 = 45° too, so that ADFE(C has two congruent
angles, and hence two congruent sides DE and DC. .

Figure 162

Furthermore, in the triangle BED, the angle 3 is congruent to
the right angle B minus the angle ABD, and the angle 5 is congruent
to the right angle ADE less the angle ADE. But LZADB = ZABD
(since AB = AD), and hence £3 = £5. Then the triangle BED
must be isosceles, and therefore BE = DFE = DC.

Having noted this, let us apply the Euclidean algorithm to the
segments AB and AL '

Since AC > AB and AC < AB + BC, ie. AC < 2AB, then
the leg AB fits the hypotenuse AC only once, and the remainder
is DC. Now we have to use the remainder DC o exhaust AB,
or equivalently, BC'. But the segment BE is congruent to DC by
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the above observation. Therefore we need to further mark DC of
EC. But EC is the hypotenuse of the isosceles right triangle DEC.
Therefore the Euclidean algorithm now reduces to exhausting the
hypotenuse EC of an isosceles right triangle by its leg DC. In its
turn, this process will reduce to exhausting the hypotenuse of a new,
smaller isosceles right triangle by its leg, and so on, indefinitely.
Obviously, this process never ends, and therefore a common measure
of the segments AC and AB does not exist.

149. Lengths of segments. The length of a segment is ex-
pressed by a number obtained by comparing this segment with an-
other one, called the unit of length, such as e.g. meter; centimeter,
yard, or inch.

Suppose we need to measure a given segment o (Figure 163) using
a unit b, commensurable with ¢. If the greatest common measure of
a and b is the unit b itself, then the length of & is expressed by a
whole number. For instance, when b is contained in a three times,
one says that the length of a is equal to 3 units (i.e. a = 3b). If the
greatest common measure of ¢ and b is a part of b, then the length
is expressed by a fraction. Fér example, if %b is a common measure,
and it is contained in ¢ nine times, then one says that the length of
a is equal to 9/4 units (i.e. a = 2b).

Whole numbers and fractions are called rational numbers.

Thus, the length of a segment commensurable with a unit of length
15 expressed by & rational number telling us how many times some
fraction of the unit is conlained in the given segment.

¥
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Figure 163 © figure 164

150. Approximations. The discovery of incommensurable seg-
ments was made by ancient Greeks. It shows that rational num-
bers are, generally speaking, insufficient for expressing lengths of
segments. For instance, according to §148, no rational number can
éxpress the length of the diagonal of a square, when its side is taken
for the unit of length.
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Measuring a segment ¢ incommensurable with the unit & is done
indirectly: instead of the segment a, one measures other segments
commensurable with the unit and such that they. differ from a by as
little as one wishes. Namely, suppose we want to find commensurable
segments that would differ from a by less than 1—106. Then divide the
unit into 10 equal parts (Figure 164) and repeat oune such part as
many times ag needed to exhaust a. Suppose %Ob is contained in

a thirteen times with a remainder smaller than %b. We obtain s

segment ¢’ commensurable with b and smaller than a. Adding 75b
once more, we obtain another segment a” also commensurable with
b and greater than a. The lengths of the segments ¢’ and o are
expressed by the fractions 13/10 and 14/10. These¢ numbers are
considered as approximations to the length of the segment a, the
first from below, the second from above. Since they both differ
from @ by less than sth of the unit, one says that each of them
expresses the length with the precision of up to 3 (or with the
error smaller than 35).

In general, to approximate the length of a segment a with the
precision of up to T—ll't:h of a unit b, one divides the unit into n equal
parts and finds how many times the %t}z pait of the unit is contained
in a. If it is contained m times with a remainder smaller than b,
then the rational numbers 2 and mTfl are said to approximate the
length of a with the precision of up to %, the first from below, and
the second from above.

151. Irrational numbers. The precise length of a segment in-
commensurable with the unit of lengthis expressed by an irrational
number. ! It can be represented by an infinite decimal fraction
constructed as follows. One consecutively computes approximations
from below for the length of the segment o with the precision of up
t0 0.1, then up to 0.01, then up to 0.001, and continues this process
indefinitely, each time improving the precision 10 times. This way,
one obtainsg decimal fractions first with cne place after the decimal

IThe first definition of irrational numbers, usually attributed to a Greek math-
ematician Eudoxus (408 — 355 B.C.), is found in Book 5 of Euclid’s “Elements.”
Given a segment incommensurable with the unit of length, all segments commen-
surdble with the unit (and respectively all fractions m/n expressing their lengths)
are partitioned into two digjoint groups: those which are smaller than the given
segment, and those which are greater. According to Eudoxus, an irrational num-
ber issuch a partition (a cut, in the modern terminology) of the set of all rational
nurnbers. This somewhat abstract construction coincides with one of the modern
definitions of irrational numbers proposed by R. Dedekind [2] in the late 19th
century.
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point, then with two, then with three, and further on with more and
more decimal places. :

The result of this infinite process is an infinite decimal fraction.
It cannot be written, of course, on a page since the number of dec-
imal places is infinite. Nevertheless, an infinite decimal fraction ig
considered known when a rule which determines any finite number
of its decimal signs is known.

Thus, the length of a segment incommensurable with the unit of
length is expressed by an infinite decimal fraction whose finite parts
express lengths of segments commensurable with the unit and approz-
imating the given segment with the errors that become consecutively
smaller than 1/10th part of the unit, 1/100th, 1/1000th, and so on.

152. Remarks. (1) The same infinite decimal fraction can be ob-
tained by using approximations to the irrational number from above
rather than from below. Indeed, two approximations taken with the
gsame precision, one from above, the other from below, differ only
in the rightmost decimal place. When the precision improves, the
rightmost place moves farther and farther to the right, thus leaving
behind the same sequence of Hecimal signs in both fractions.

(2) The same method of decimal approximations applies to & seg-
ment commensurable with the unit of length. The result will be the
rational number, expressing the length of the segment and repre-
sented as an (infinite} decimal fraction. It is not hard to show that
the decimal fraction representing a rational number is repeating,
i.e. it contains a finite sequence of decimal signs which begins to re-
peat again and again starting from some decimal place and going all
the way to the right. Conversely, every repeating decimal fraction,
as it is not hard to see, represents a rational number. Therefore the
decimal fraction representing an irrational number (e.g. the length
of any segment incommensurable with the unit) is non-repeating,.
For example, the decimal fraction

V2 =1.4142 ...

is non-repeating, since the number /2, as it is well known, is irra-
tional.

(3) Rational and irrational numbers are called real numbers.
Thus, infinite decimal fractions, repeating and non-repeating, repre-
sent (positive} real numbers.

153. The number line. The correspondence between segments

and real numbers expressing their lengths allows one to represent
real numbers as points on a straight line. Consider a ray OA (Figure
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165) and mark on it a point B such that the segment OB is congru-
ent to the unit of length. Every point C on the ray determines the
segment OC whose length with respect to the unit OB is expressed
by a positive real number ¢. One says that the point C represents
the number ¢ on the number line. Conversely, given a positive real
number, say v/2, its finite decimal approximations 1.4, 1.41, 1.414,
etc. are lengths of certain segments ODy, ODq, ODj3, etc. com-
mensurable with the unit. The infinite sequence of such segments
approximates from below a certain segment OD. One says that the
number (v/2 in this example) is represented by the point D on the
number line.

In particular, the point B represents the number 1, and the point
O the number 0.

Now we extend the ray OA to the whole straight line. Then
the point 7 on the ray OA’ (Figure 165), symmetric with respect
to the center O to a point C on the ray OA, is said to represent
the negative real number —c, i.e. the opposite to that positive
number which is represented by the symmetric point C.

Thus, all real numbers: positive, zero, or negative, are repre-
sented by points on the number line. conversely, picking on any
straight line any two points O and B to represent the numbers 0 and
1 respectively, we establish a correspondence between all points of
the line and all real numbers.
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Figure 1865

154. Ratio of two segments. The ratio of one line segment
to another is defined as the positive real number which expresses
the length of the first segment when the second one is taken for the
unit of length. For example, if two segments ¢ and ¢ are such that
a = 2.1c, Le. if the segment a, measured by the unit ¢, has the length
2.1, then 2.1 is the ratio of a to c.

If both segments ¢ and ¢ are measured by the same unit b, then
the ratio of @ to ¢ can be obtained by dividing the number expressing
the length of a by the number expressing the length of ¢. For instance,
if the lengths of @ and ¢ turned out to be 7/2 and 5/3, we can write:
a = %b and ¢ = gb. Taking then ¢ for the unit, we find that b = %c,
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and respectively

Ty T8N (T 8\, _(T.5),
PV TR Y T\ )T 23

Therefore the ratio of @ to ¢, i.e. the len%th of the segment a measured

by the unit ¢, is equal te the quotient £ : 2 =23 =21 =2,

The ratio of two segments is usually dmoted as a : cor %. Due
to the property of the ratio described above, the letters ¢ and ¢ in
these formulag can also be understood as numbers measuring the
corresponding segments by the same unit b.

155. Proportions. A proportion expresses equality of two ra-
tios. For instance, if it is known that the ratio @ : b of two segments
is equal to the ratio ' : ¥ of two other segments, then this fact can
be expressed as a proportion: a:b=a : ¥, or

In thls case we will also say that the two pairs of segments: o and b,
and o and ¥, are proportional to each other.

When such pairs of segments are proportional, i.e. a:b=4q : ¥,
then a : @’ = & : ¥, i.e. the pairs a and o/ and b and ¥ (obtained
from the original ones by transposing the mean terms  and o) are
proportional too.

Indeed, replacing the four segments with numbers that express
their lengths measured with the same unit, we see that each of the
resulting numerical proportions:

a b

a
P dQ‘?

expresses the same equality between products of the numbers:

ax¥b =d xb.

EXFERCISES

329. If the full angle is taken for the unit of angular measure, find
the measures of the anglss containing 1°, 1/, 17.

330. Prove that ifa: b=0a : ¥/, then (¢ +¢') : (b+ V) =¢a:b.
331.Provethatife:a' =b: ¥ =c: ¢, then (a+b) : e = (&+V) : ¢
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332. Prove that if one side of a triangle is a common measure of the
other two sides then the triangle is isosceles.

933. Prove that the perimeter and midline of a trapezoid circumn-
scribed about a circle are commensurable.

334. Prove that the perimeter of an inscribed equilateral hexagon
and the diameter of its circumscribed circle are commensurable.

335. In a triangle, find the greatest common measure of two seg-
ments: one between the orthocenter and barycenter, the other be-
tween the orthoecenter and circumcenter.

336. Prove that the greatest common measure of two segments con-
tains every their common measure a whole number of times.
Hint: All remainders in the Euclidean algorithm do.

837. Suppose that two given arcs on a given circle have the greatest
common measure o Show how to construct the arc o using only a
compass. Consider the example where one of the given arcs contains
19°, and the other 360°.

338. Find the greatest common measure of two segments:
(a) one 1001 units long, the other 1105 units long;
(b) one 11,111, the other 1,111,111 units long.’

229. Prove that the numbers /2, v/3, v/5 are irrational.

34 0. Compute /5 with the precision of up to 0.0001.

841. Write 1/3,1/5,1/7,1/17 as (finite or infinite) decimal fractions.
842.% Prove that a rational number m/n is represented by.a finite

or repeating decimal fraction. Conversely, prove that a finite or re-
peating decimal fraction represents a rational number.

848. An acute angle of a parallelogram contains 60°, and its obtuse
angle is divided by the diagonal in the proportion 3 : 1. Find the
ratio of the sides of the parallelogram.

34.4.* Prove that the base of an isosceles triangle, whose angle at the
vertex contains 36°, is incommensurable to the lateral side.

Hint: Draw the bisector from a vertex at the base, and compute
angles of the two triangles thus formec.

2 Similarity of triangles

156. Preliminary remarks. In everyday life, we often en-
counter figures which have different sizes, but the same shape. Such
figures are usually called similar. Thus, the same photographic pic-
ture printed in different sizes, or schemes of a building, or maps
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of a town, produced in different scales, provide examples of similar
figures. Our concept of length of segments allows us to define pre-
cisely the concept of geomstric similarity of figures and to describe
ways of changing sizes of figures while preserving their shapes. Such
changes of the size of a figure without changing its shape are called
similarity transformations.

We begin our study of similar figures with the simplest case,
namely similar triangles.

157. Homologous sides. We will need to consider triangles or
polygons such that angles of one of them are respectively congruent to
the angles of another. Let us agree to call homologous those sides of
such triangles or polygons which are adjacent to the congruent angles
(in triangles, such sides are also opposite to the congruent angles).

158. Definition. Two triangles are called similar, if: (1) the
angles of one are respectively congruent to the angles of the other,
and (2) the sides of one are proportional to the homologous sides of
the other. Existence of such triangles is established by the following
lemmma. 2

159. Lemma. A line (DE, Figure 166), parallel to any side
(AC) of a given triangle (ABC), cuts off a triangle (DBE),
stmilar to the given one. '

In a triangle ABC, let the line DE be paraliel to the side AC. It
is required to prove that the triangles DBFE and ABC are similar.
We will have to prove that (1) their angles are respectively congruent,
and (2) their homologous sides are proportional.

(1) The angles of these triangles are respectively congruent, be-
cause £ZB is their common angle, and /D = /A and ZE = £O
as corresponding angles between parallel lines (DFE and AC), and a
transversal (AB or C'B respectively).

(2) Let us now prove that the sides of ADBE are proportional
to the homologous sides of AABC, i.e. that

BD BE DE
BA BC  AC

For this, consider the following two cages.

(i) The sides AB and DB have a common measure. Divide the
side AB into parts congruent to this common measure. Then DB
will be divided into a whole number of such parts. Let the number of

"?An auxiliary theorem introduced in order to facilitate the proof of another
theorem which follows it is called a lemma.
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such parts be m in DB and n in AB. From the division points, draw
the set of lines parallel to AC, and another set of lines parallel to
BC. Then BE and BC will be divided into congruent parts (§93),
namely m in BE and n in BC'. Likewise, DE will be divided into m
congruent parts, and AC inte n congruent parts, and moreover the
parts of DE will be congruent to the parts of AC (as opposite sides
of parallelograms). It becomes obvious now that

BD_m BE m Z?E__n_?:

BA n' BC n’ AC n’
Thus BD : BA = BE : BC = DFE : AC.

b\/\\\\\\\

A . W W W \\\‘E
VAR ANANANY
VAN YA RN NN
AN VALY

AN N NN SONNON N N NN

C A c

Figure 166 Figure 167

(ii) The sides AB and DB do not have a common measure (Fig-
ure 167). Approximate the values of each of the ratios BD : BA
and BFE : BC with the precision of up to 1/n. For this, divide the
side AB into n congruent parts, and through the division points,
draw the set of lines parallel to AC. Then the side BC will also be
divided into n congruent parts. Suppose that the T—llth part of AB
is contained m times in DB with a remainder smaller than %AB.
Then, as it ig seen from Figure 167, the %th part of BC is contained
in BE also m times with a remainder smaller than %B C. Similarly,
drawing the set of lines parallel to BC, we find that the %th part of
AC is contained in DE also m times with a remainder smaller than
one such part. Therefore, with the precision of up to +th, we have

BD m BE _m DE _m

BA w BC n AC  n’

where we uge the symbol “~” to express the approximate equality of
numbers, which holds true within a required precision.

———— - -

I R — e ——— e
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Taking first n = 10, then 100, then 1000, and so on, we find
that the approximate values of the ratios computed with the same
but arbitrary decimal precision, are equal to each other. Therefore

the values of these ratios are expressed by the same infinite decimal
fraction, and hence BD : BA=BE : BC =DE : AC.

160. Remarks. (1) The proven equalities can be written as the
following three proportions:

BD BE BE DE DE BD
BA BC’ BC  AC’ AC T BA°

Transposing the mean terms we obtain:

BD BA BE BC DE _AC
BE BC' DE AC’' BD BA

Thus, if the sides of two triangles are proportional, then the ratio of
any two sides of one triangle is equal to the ratio of the homologous
sides of the other. .

(2) Similarity of figures is sometimes indicated by the sign ~.
161. Three similarity tests for triangles.
Theorems. If in two triangles,

(1} two angles of one triangle are respectively congruent
to two angles of the other, or

(2) two sides af one triangle are proportional to two sides
of the other, and the angles between these sides are congru-
ent, or

(3) if three sides of one triangle are proportional to three
sides of the other,

then such triangles are similar.

(1) Let ABC and A’B'C’ {Figure 168} be two triangles such that
LA = LA LB = 4B, and therefore /C = ZC" 1t is required to
prove that these triangles are similar.

Mark on AB the segment BD congruent to A’B’, and draw
DE|AC. Then we obtain auxiliaty ADBE, which according to
the lemma, is similar to AABC. On the other hand, ADBE is
congruent to AA'B'C’ by the ASA-test, because BD = A’B’ (by
construction), £B = £B' {by hypotheses), and £D = ZA’ (since
LD = ZAand LA = ZA"). Clearly, if one of two congruent trisngles
is~similar to another one, then the second one is also similar to it.

Therefore AA'B'C ~ AARC.



2. Similarity of triangles 131

(2) Let ABC and A'B'C’ (Figure 169) be two triangles such that
/B = /B and A’B': AB= B'(’: BC. It is required to prove that
these triangles are similar. ,

As before, mark on AB the segment BD congruent to A'B’, and
draw DE||AC. Then we obtain auxiliary ADBE similar to AABC.
Leb us prove that it is congruent to AA'B'CY. From the similar-
ity of ADBE and AABC, it follows that DB : AB = BE : BC.
Comparing this proportion with the given one, we note that the first
ratios of both proportions coincide {since DB = A'B’), and hence
the remaining ratios of these proporiions are equal too. We see
that B'CY : BC = BE : BC, i.e. that the segment B'C’ and BE
have equal length when measured by the same unit BC, and hence
B'C' = BE. We conclude now that the triangles DBE and A’B'("
are congruent by the SAS-test, because they have congruent angles
/B and ZB' between respectively congruent sides. But ADBE is
similar to AABC, and therefore AA’B'C’ is also similar to AABC.

ADK 7)'\; A’ < A/D \: A <’

Figure 168 Figqure 169

(3) Let ABC and A'B'C’ (Figure 169) be two triangles such that
A'B' . AB = B/C’ . BC = A'CY : AC. Tt is required to prove that
these triangles are similar.

Repeating the same construction as before, let us show that
ADBE and AA'B'C’ are congruent. From the similarity of the tri-
angles DBE and ABC, it follows that DB : AB=BE: BC= DL
AC. Comparing this series of ratios with the given one, we notice
that the first ratios in both series are the same, and therefore all other
ratios are also equal to each other. From B'C’' : BU = BE : BC,

we conclude that B'C’ = BE, and from A'C' : AC' = DE : AC that

A'C! = DE. We see now that the triangles DBE and A'B'(C’ are
congruent by the SSS-test, and since the first one of them is similar
to AABC, then the second one is also similar to AABC.

162. Remarks (1) We would like to emphasize that the method
applied in the proofs of the previous three theorems is the same.
Namely, marking on 2 side of the greater triangle the segment con-

e e
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gruent to the homologous side of the smaller triangle, and drawing
the line parallel to another side, we form an auxiliary triangle similar
to the greater given one. Then we apply the corresponding congru-
ence test for triangles and derive from the hypotheses of the theorem
and the similarity property that the auxiliary triangle is congruent
to the smaller given one. Finally the conclusion about similarity of
the given triangles is made.

(2) The three similarity tests are sometimes called the AAA-
test, the SAS-test, and S8S-test respectively.

163. Similarity tests for right triangles. Since every two
right angles are congruent, the following theorems follow directly
from the AAA-test and SAS-test of similarity for general triangles
and thus do not require separate proofs:

If in two right triangles,

(1) an acute angle of one is congruent to an acute angle of the
other, or

(2) legs of one are proportional to the legs of the other,
then such right triangles are similar.

The following test does require a separate proof.

Theorem. If the hypotenuse and a leg of one right triangle

are proportional {o the hypotenuse and a leg of another one,
then such triangles are similar.

Let ABC and A’B'C’ be two triangles (Figure 170) such that
the angles B and B’ are right, and A'B' : AB = A'C' : AC. It is
required to prove that these triangles are similar.

B B’
c o o
EM
At DJ Cl

A’ B’ [
A D B A D C

Figure 170 Figure 171

We apply the method used before. On the segment AB, mark
BD = A’B’ and draw DE|AC. Then we obtain the auxiliary tri-
angle ADBE similar to AABC. Let us prove that it is congru-
ent to AA'B’C’. From the similarity of the triangles DBE and
ABC, it follows that DB : AB = DE : AC. Comparing with
the given proportion, we find that the first ratios in both propor-
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tions are the same, and therefore the second ratios are equal too,
ie. DE : AC = A'C' : AC, which shows that DE = A'C'. We see
now that in the right triangles DBE and A'B'CY, the hypotenuses
and one of the legs are respectively congruent. Thus the triangles
are congruent, and since one of them is similar to L ABC, then the
other one is also similar to it.

164. Theoren. In similar triangles, homologous sides are
proportional to homologous altitudes, i.e. to those altitudes
which are dropped to the homologous sides.

Indeed, if triangles ABC and A'B'C’ (Figure 171) are similar,
then the right triangles BAD and B'A'D’ are also similar (since
LA = /LA"), and therefors

BD AB BC AC

B'D' - A'B’ F" B = Ay

EXERCISES

Prove theorens:

845. All equilateral triangles are similar.
 846. All isosceles right triangles are similar.

347. Two isosceles triangles are similar if and only if their angles at
the vertex are congruent.

$48. In similar triangles, homologous sides are proportional to:
(a) homologous medians (i.e. those medians which bisect homol-
ogous sides), and (b) homologous bisectors (i.e. the bisectors of
respectively congruent angles).

349. Every segment parallel to the base of a trlangle and connecting
the other two sides is bisected by the median drawn from the vertex.
250. The line drawn through the midpoints of the bases of a trape-
zoid, passes through the intersection point of the other two sides,
and through the intersection point of the diagonals.

851. A right triangle is divided by the altitude drawn to the hy-
potenusge into two triangles similar to it.

9252. If a line divides a triangle into two similar triangles then these
similar triangles are right.

353, Given three lines passing through the same point. If a point
moves along one of the lines, then the ratio of the distances from this
point o the other two lines remains fixed.
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354. The line connecting the feet of two altitudes of any triangle
cuts off a triangle similar to it. Derive from this that altitudes of
any triangle are angle bisectors in-another triangle, whose vertices
are the feet of these altitudes.

355.% If a median of a triangle cuts off a triangle similar to it, then
the ratio of the homologous sides of these triangles is 1rra{10n<11
Hint: Find this ratio.

Computation problems

356. I a trapezoid, the line parallel to the bases and passing through
the intergsection point of the diagonals is drawn. Compute the length
of this line ingide the trapezoid, if the bases are ¢ units and b units
leng.

257. In a triangle ABC with sides a, b, and ¢ units long, a line MN
parallel to the side AC is drawn, cutting on the other two sides the
segments AAM = BN. Find the length of MN.

258. Into a right triangle with legs ¢ and b units long, a square is
inscribed in such a way that one of its angles is the right angle of the
triangle, and the vertices of the square lie on the sides of the triangle.
Find the perimeter of the square.

359. T'wo circles of radii R and r respectively are tangent externally
at a point M. Compute the distance from M to the common external
tangents of the circles.

3 Similarity of polygons

165. Definition. Two polygons with the same number of sides
are called similar, if angles of one of them are respectively congru-
ent to the angles of the other, and the homologous sides of these
polyvgons are proportional. Thus, the polygon ABCDE is similar to
the polygon A'B'C'D'E’ (Figure 172), if

LA=/LA, /B =4B, LC=/C", /D=/D, /E=/FE,

and
AB BC D DE EA

Al B! = By = oy = M EY = B A
Existence of such polygons is seen from the solution of the foﬂz}wmg
problem.
166. Problem. Given & polygon ABCDE, and a segment o,
construct another polygon similar to the given one and such that its

side homologous to the side AB is congruent to a (Figure 173).
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Here is a simple way to do this. On the side AB, mark AB' = ¢ (if
a > AB, then the point B’ lies on the extension of AB). Then draw
all diagonals from the vertex A, and construct B'C’|BC, C'D/||CD
and D'E'|DE. Then we cbtain the polygon AB'C'D'E’ similar to
the polygon ABCDE.

5 ’ D
A

A £ E

Figure 172 Figure 173

Indeed, firstly, the angles of one of them are congruent to the an-
gles of the other: the angle A is common; £ZB' = ZB and LE' = ZE
as corresponding angles between parallel lines and a transversal;
L0 = £C and £D' = £D, since these angles consist of parts respec-
tively congruent to each other. Secondly, from similarity of triangles,
we have the following proportions:

AB'  BC'  ACT
AB  BC AC’
AC!  C'D AD
from AAC'D' ~ AACD: = = :
on UD: 4 =T¢p T ap’
AD'  D'E'  AF
f AAD'E ~ AADE: = = i
rom AD = DE ~ AE
Since the third ratio of the first row coincides with the first ratio of
the second row, and the third ratio of the second row coincides with
the first ratio of the third row, we conclude that all nine ratios are
equal to each other. Discarding those of the ratios which involve the
diagonals, we can write:

AB' B'C' CD DE AF
AB ~ BC ~ CD DE AE’

We see therefore that in the polygons ABCDE and AB'C'D'E,
which have the same number of vertices, the angles are respectively

from AAB'C' ~ AABC":
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congruent, and the homologous sides are proportional. Thus these
polygons are similar.

167. Remark. For triangles, as we have seen in §161, congruence
of their angles implies proportionality of their sides, and conversely,
proportionality of the sides implies congruence of the angles. As a
result, congruence of angles alone, or proportionality of sides alone
is a sufficient test of similarity of triangles. For polygons however,
congruence of angles alone, or proportionality of sides alone is in-
sufficient to claim similarity. For example, a square and a rectangle
have congruent angles, but non-proportional sides, and a square and
a rhombus have proportional sides, but non-congruent; angles.

168. Theorem. Similar polygons can be partitioned into
an equal number of respectively similar triangles positioned
tn the same way. “

For instance, similar polygons ABCDE and AB'C'D'E! (Figure
173) are divided by the diagonals into similar triangles which are
positioned in the same way. Obviously, this method applies to every
convex polygon. Let us point out another way which also works for
convex polygons. 3

Inside the polygon ABCDE (Figure 172), take any point O and
connect it te all the vertices. Then the polygen ABCDE will be
partitioned into as many triangles as it has sides. Pick one of them,
say, AAOE (it is shaded on the Figure 172}, and on the homolo-
gous side A'E’ of the other polygon, construct the angles O'4'F/
and O'E’A’ respectively congruent to the angles OAE and OFEA.
Connect the intersection point O’ with the remaining vertices of the
polygon A’B'C'D’'E". Then this polygon will be partitioned into the
same number of triangles. Let us prove that the triangles of the first
polygon are respectively similar to the triangles of the second one.

Indeed, AAOE is similar to AA'CQ/E' by construction. To prove
similarity of the adjacent triangles AOB and A’ O'B’, we take into
account that similarity of the polygons implies that

BA AFE
£BAE = /B'A'F', and B4 U5
and similarity of the triangles AOE and A'C)E’ implies that
AO AFE
LOAE = LO'4F, and T = 20
It follows that
- BA AO

LBAO = £B'A'0’, and i 1O
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We see that the triangles AOB and A’O'B’ have congruent aungles
contained between two proportional sidss, and are therefore similar.

In exactly the same way, we then prove similarity of ABOC and
AB'O'C’, then of ACOD and AC'O'D’, ete. Obviously, the similar
triangles are positioned in their respective polygons in the same way.

In order to prove the theorem for non-convex polygons, it suffices
to partition them in the same way into convex oues, by the method
explained in §82 (see Remark (2)).

169. Theorem. Perimeters of similar polygons are pro-
portional to homologous sides.

Indeed, if polygons ABCDE and A'B'C'D'E' (Figwre 172) are
similar, then by definition '

AB BC CD DE EA

A'B! = Bl oD = D'E! = E!' A’ =k,
where & is some real number. This means that AB = k(A'B’),
BC = k(B'C"), etc.. Adding up, we find

AB+BC+CD+DE+EA=KAB +B'C' +C'D'+D'E +FE' A,

and hence

AB+ BC+CD+DE+FEA
AB +BC+C'D - DE + ETA

= k.

Remark. This is a general property of proportions: given a row
of equal ratios, the sum of the first terms of the ratios are to the sum
of the second terms, as each of the first terms is to the corresponding
second term.

EXERCISES

860. Prove that all squares are similar. _

361. Prove that two rectangles are similar if and only if they have
equal ratios of non-parallel sides.

262. Prove that two rhombi are similar if and only if they have
congruent angles. -

363. How does the previous result change if the rhombi are replaced
by arbitrary equilateral polygons?

864. Prove that two kites are similar if and only if the angles of one
of them are respectively congruent to the angles of the other.
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365. Prove that two inscribed quadrilaterals with perpendicular di-
agonals are similar if and only if they have respectively congruent
angles.

366.* How does the previous result change, if the diagonals of the
inscribed quadrilaterals form congruent angles, other than d?

367. Prove that two circumscribed quadrilaterals are similar if and
only if the angles of one of them are respectively congruent to the
angles of the other.

368. How does the previous result change if quadrilaterals are re-
placed by arbitrary polygons? _

269. Two quadrilaterals are cut into two congruent equilateral tri-
angles each. Prove that the quadrilaterals are similar.

370. How does the previous result change if the equilateral triangles
are replaced with right isosceles triangles?

4 Proportionality gheorems.

170. Thales’ theorem. The following result was known to the
Greek philosopher Thales of Miletus (624 B.C. — 547 B.C.)

Theorem. The sides of an angle (ABC, Figure 174) inter-
sected by a series of parallel lines (DD, EF', FF', ..) are
divided by them into proportional parts.

M
A

LN
PRV CEECA T

Figure 174 Figure 175

It is required to prove that

BD DE EF

BD'  D'E EERF T
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or, equivalently, that
BD BD' DE DE
DE D'E’” EF FEF’
Draw the suxiliary lines DM, EN, ..., parallel to BA. We obtain
the triangles BDD', DEM, EFN, ..., which are all similar to each
other, since their angles are respectively congruent (due to the prop-

erty of parallel lines intersected by a transversal). It follows from the
similarity that

BD DE EF _

BD' DM EN 7
Replacing in this sequence of equal ratios the segments: DM with
D'E', EN with E'F", ..., {congruent to them as opposite sides of
parallelograms), we obtain what was required to prove.

171. Theorem. Two parallel lines (MN and M'N', Figure
175) intersected by a series of lines (OA, OB, OC, ...), drawn
from the same point (O), are divided by these lines into pro-
portional parts. .

It is required to prove that the segments AB, BC, CD, ... of
the line M N are proportional to the segments A'B’, B'C’, C'D/, ...
of the line M’'N’,

From the similarity of triangles (§159): OAB ~ OA'B’ and
OBC ~ QB'C’, we derive:

AB  BO o BO  BC
A'B' T B'O B'O B

and conclude that 4B : A’B' = B’ : B'C". The proportionality of
the other segments is proved similarly.

172. Problem. To divide o line segment AB (Figure 176) into
three parts inthe proportion m : n : p, where m, n, and p are given
segments or given whole numbers.

Issue a ray AC making an arbitrary angle with AB, and mark on
it, starting from the point A, the segments congruent to the given
segments m, n, and p. Connect the endpoint F of the segment p with
B, and through the endpoints G and H of the marked segments, draw
the lines G and HE parallel to F'B. Then the segment AB will be
divided by the points D and £ in the proportion m :n : p.

When m, n, and p denote given whole nurbers, e.g. 2,5, 3, then
the construction is performed similarly, except that the segments
marked on AC are to have lengths 2, 5, and 3 in the same arbitrary
units.
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The described construction applies, of course, to division of seg-
ments into any number of parts.

173. Problem. Given three segments a, b, and ¢, find a fourth
segment to form a proportion (Figure 177), i.e. find a segment z such
that a:b=c: z.

On the sides of an arbitrary angle ABC, mark the segments
BD = a, BF = b, DE = ¢. Connect D and F, and construct
EG||DF. The required segment is F'G.

m a
n b
P c

Figure 176 Figure 177

174. A property of bisectors.

Theorem. The bisector (BD, Figure 178) of any angle of a
triangle (ABC) divides the opposite side into parts (AD and
DC) proportional to the adjacent sides.

It is required to prove that if ZABD = /ZDBC, then

AD _ AB
DC  BC

Draw CFE parallel to B up to the intersection at a point F with
the extension of the side AB. Then, according to Thales’ theorem
(§170), we will have the proportion AD : DC = AB : BE. To derive
from this the required proportion, it suffices to show that BE = BC,
ie. that ACBE is isosceles. In this triangle, /F = ZABD and
LBCE = ZDBC f{respectively as corresponding and as alternate
angles formed by a transversal with parallel lines). But ZABD ==
ZDBC by the hypothesis, hence LE = ZBCE, and therefore BC
and BE are congruent as the sides opposite to congruent angles.
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. Example. Let AB = 30, BC = 24, and AC = 36 cm. We can
denote AD by the letter z and write the proportion:

x _@ o €T 5
36—z 24 7

36—z 4

We find therefore: 4oz = 180 — b, or 8z = 180, t.e. & = 20. Thus
AD =20 em, and DC =36 —2 =16 cm.

175. Theorem. The bisector (BD, Figure 179) of an exterior
angle (CBF) at the vertex of a triangle (ABC) intersects the
extension of the base (AC) at a point (D) such that the dis-
tances (DA and DC) from this point to the endpoinis of the
base are proportional to the lateral sides (AB and BC) of the
triangle. .

A C D
A D C

-Figure 178 Figure 179

In other words, it is required to prove that if Z/CBD = ZFBD,

then
DA AB
DC  BC’

Drawing C'F||BD, we can write the proportion: DA : DC =
BA : BE. Since /BEC = £FBD and /BCE = ZCBD (respec-
tively as corresponding and as alternate angles formed by parallel
lines with a transversal), and ZFBD = ZCBD by the hypothe-
sis, we have /ZBE(C = /BCE. Therefore AEBC is isosceles, i.e.
BE = B(C. Replacing, in the proportion we already have, the seg-
ment BC with the congruent segment BE, we obtain the required
proportion: DA : DU = BA : B(,

Remark. The bisector of the exterior angle at the vertex of an

isosceles triangle is parallel to the base. This is an exceptional case
in the formulation of the theorem and in its proof.
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EXERCISES

371. Prove that if proportional segments are marked on the sides
of an angle starting from the vertex, then the lines connecting their
endpoints are parallel.

372. Construct a line segment connecting lateral sides of a given
trapezoid and parallel to its bases, such that it is divided by the
diagonals into three congruent parts.

373. Construct a triangle, given the angle at the vertex, the base,
and its ratio to one of the lateral sides.

374. Prove that the bisector of the angle between two non-congruent
sides of & triangle is smaller than the median drawn from the same
vertex.

375. In a triangle with sides 12, 15, and 18 ¢m, a circle is drawn
tangent to both smaller sides and with the center lying on the greatest
side. Find the segments into which the center divides the greatest
side.

376. Through a given point gn the bisector of a given angle, draw a
line whose part inside the angle is divided .by the point in the given
proporiion m : n.

377. Construct a triangle, given the angle at the vertex, the base,
and the point on the bage where it meets the angle bisector.

378. Into a given circle, inscribe a triangle, given its base and the
ratio of the other two sides.

379.% Construct a triangle, given two of its sides and the bigector of
the angle between them.
Hint: Examine Figure 178, and construct ACBE first.

380.* In AABC, the side AC =6 ¢m, BC =4 em, and /B = 2/A.
Compute AB.
Hint: See Example in §174.

381. Given two points A and B on an infinite line, find a third point
C on this line, such that CA : CB = m : n, where m and n are given
segments or given numbers. (If m # n there are two such points:
one between A and B, the other outside the segment AB.) _
382.* Given two points A and B, find the geometric locus of points
M such that M A and M B have a given ratio m : n.

Hint: The answer is often called Apollonius’ circle after the Greek
geometer Apollonius of Perga (262 — 190 B.C.)

383.* Into & given circle, inscribe a triansgle, given its base, and the
ratio of the median, bisecting the base, to one of the lateral sides.
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5 Homothety

176. Homothetic figures. Suppose we are given (see Figure
180): a figure @, a point S, which we will call the center of homo-
thety, and a positive number k, which we will call the similarity
coefficient (or homothety coefficient). Take an arbitrary point A
in the figure ® and draw through it the ray SA drawn from the center
&. Find on this ray the point A’ such that the ratio §A’ : SA is equal
to k. Thus, if K < 1, e.g. k = 1/2, then the point A’ lies between S
and A {as in Figure 180), and if & > 1, e.g. k = 3/2, then the point
A’ lies beyond the segment SA. Take another point B of the figurs
@, and repeat the same construction as we explained for A, i.e. on
the ray SB, find the point B’ such that SB’ : §B = k. Imagine now
that, keeping the point S and the number k unchanged, we find for
gvery point of the figure @ the corresponding new point obtained by
the same construction. Then the geometric locus of all such points is
a new figure ®. The resulting figure &’ is called homothetic to the
figure ® with respect to the center § and with the given coefficient .
The transformation of the figure @ into @ is called a homothety,
or similarity transformation, with the center S and coefficient k.

Figure 180 Figure 181

177. Theorem. A figure homothetic to a line segment (AB,
Figure 181) is a line segment (A'B’), parallel to the first one
and such that the ratio of this segment to the first one is
equal to the homothety coefficient.

Find points A’ and B’ homothetic to the endpoints A and B of
the first segment with respect to the given center S and with the
given homothety coefficient k. The points A" and B’ lie on the rays
SA and 9B respectively, and SA’ : YA =k = SB’ : §B. Connect
A’ with B and prove that A’B’|AB, and A'B’ : AB = k. Indeed,
NAA'SB ~ AASE since they have the common angle S, and their
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sides containing this angle are proportional. From the similarity of
these triangles, it follows that A’B’: AB = §A’ : SA = k, and that
£LBAS = /B'A’S, and hence that A'B’||AB.

Let us prove now that the segment A’B’ is the figure homothetic
to AB. For this, pick any point M on AB and draw the ray M. Let
M’ be the point where this ray intersects the line A’ B’. The triangles
M'A'S and M AS are similar because the angles of one of them are
congruent to the angles of the other. Therefore SA' 1 SM = §A' :
SA =k, 1.e. M’ is the point homothetic to M with respect to the
center S and with the coefficient k. Thus, for any point on AB, the
point homothetic to it lies on A’B. Vice versa, picking any point
M’ on A’B" and intersecting the ray SM' with AB, we similarly find
that M’ is homothetic to M. Thus the segment A’B’ is the figure
homothetic to AB.

Remark. Note that the segment A’B’ with the endpoints respec-
tively homothetic to the endpoints of the segment AB, is not only

parallel to AB, but also has the same direction (indicated in Figure
A

181 by arrows).
7%
/o

s
B,
Figure 182 . Figure 183

O

178. Theorem. The figure homothetic to a polygon (ABCD,
Figure 182) is a polygon (A'B'C'D’} similar to the first one,
and such that its sides are parallel to the homologous sides
of the first polygon, and the ratio of the homologous sides
15 equal to the homothety coefficient (k).

Indeed, according to the previous theorem, the fizure homothetic
to a polygon ABCD is formed by the segments parallel to its sides,
directed the same way, and proportionsal to them with the propor-
tionality coefficient k. Therefore the figure is a polygon A'R'C'D,
whose angles are respectively congruent to the angles of ABCD (as
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angles with parallel respective sides, §79), and whose homologous
sides are propertional to the sides of ABCD. Thus these polygons
are similar. ,

Remark. One can define similarity of arbitrary geometric figures
as follows: two figures are called similar if one of them is congruent
to a figure homothetic to the other. Thus, homothetic figures are
similar in this sense. The theorem shows that our earlier definition
of similar polygons (§165} agrees with the general definition of similar
figures.

179. Theorem. The figure homothetic to a circle (centered
at O, Figure 183), is a circle such that the ratio of its radius
to the radius of the first circle is equal to the homothely
coefficient, and whose center (O') is the point homothetic to
the center of the first circle.

Let S be the center of homothety, and & the coefficient. Pick an
arbitrary radius OA of the given circle and construct the segment
O’ A’ homothetic to it. Then O'A’ : OA = k by the result of §177,
ie. O'A =k OA. When the radius OA rotates about the center
(), the length of the segments ¢'A’ remaing therefore constant, and
the point ' homothetic to the fixed point O, remaing fixed. Thus
the point A’ deseribes the circle with the center O’ and the radius
congruent to k times the radius of the given circle.

Figure 184

180. Negative homothety coeflicients. Suppose we are given
a figure @, & point S, and a positive number k. We can alter the
construction of the figure homothetic to & in the following fashion.
Pick a point A {Figure 184) of the figure ®, issue from S the ray
SA, and extend it beyond the point S. On the extension of this ray,
mark the point 4’ such that SA’' : S4 = k. When this construction
is repeated (keeping S and k the same) for all points A of the figure
&, the locus of the corresponding points A’ is a new figure . The
figure ®" is also considered homothetic to the figure & with respect
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to the center §, but with the negative homothety coefficient equal
to —k.

We suggest that the reader verifies the following facts about ho-
motheties with negative coefficients:

(1) The figure homothetic with a negative coefficient —k to a line
segment AB (Figure 184) is a line segment A'B’ parallel to AB,
congruent to k AB, and having the direction opposite to the direction
of AB.

(2) The similarity transformation with the center S and coefficient
—1 is the same as the central symmetry about the center S.

(3) Two figures, homothetic to a given figure about a center S and
with coefficients k and —k respectively, are cenirally symmetric to
each other about the center S.

(4) On the number line (§163), the points representing the numbers k
and —k are homothetic to the point representing the number 1 with
respect to the center 0, and with the homothety coefficients equal to
k and —k respectively.

181. The method of homothety. This method can be suc-
cessfully applied to solving many construction problems. The idea
is to eonstruct first a figure similar to the required one, and then to
obtain the required figure by means of a similarity transformation.
The homothety method is particularly convenient when only one of
the given quantities is a length, and all others are ansgles or ratios,
such as in the problems: to construct a triangle, given its angle, side,
and the ratio of the other two sides, or given two angles and a cer-
tain segment (an altitude, median, angle bisector, etc.); to construct
a square, given the sum or the difference of its side and the diagonal.
Let us solve, for example, the following problem.

Problem 1. To construct a triangle ABC, given the angle C,
the ratio of its sides AC : BC, and the ultitude h, dropped from the
verter of this angle to the opposite side (Figure 185).

Let AC : BC = m : n, where m and n are two given sesments
or two given numbers. Construct the angle C, and on its sides,
mark the segments CA’ and CB', proportional to m and n. When
m and n are segments, we may take CA' = m and CB' = n. If m
and n are whole numbers, then picking an arbitrary segment [, we
may construct CA" = ml and CB’ = nl. In both cases, we have
CA :CB' =m:n.

The triangle A'B'C is, evidently, similar to the required one.
To obtain the required triangle, construct the altitude CD’ of the
triangle A’B'C' and denote it k. Now pick an arbitrary homothety
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center and construct the triangle homothetic to the triangle A’B'C
with the homothety coefficient equal to /A" The resulting triangle
will be the required one.

It is most convenient to pick the center at the point €. Then
the construction becomes especially simple (Figure 185). Extend
the altitude C'D’ of the triangle A’B'C, mark on it the segment C'D
congruent to 2, and draw through its endpoint D the line AB parallel
to A’B’. The triangle ABC is the required one.

The position of the required figure in problems of this kind re-
maing arbitrary. In some other problems, it is required to construct
s figure in a quite definite position with respect to given points and
lines. It can happen, that discarding one of these requirements, we
obtain infinitely many sclutions sémilar to the required figure. Then
the method of homothety becomes useful. Here are some examples.

c
A’ D’ B’
A ) B
Figure 185 Figure 186

182. Problem 2. Into a given angle ABC, to inscribe a circle
that would pass through a given point M (Figure 186).

Discard temporarily the requirement for the circle to pass through
the point M. The remaining condition is satisfied by infinitely many
circles whose centers lie on the bisector BD of the given angle. Con-
struct one such circle, e.g. the one with the center at some point o.
Take on it the point m homsthetic with respect to the center B to
the point M, i.e. lying on the ray BM, and draw the radius mo. If
we now construct MO||mo, then the point O will be the center of
the required circle.

Indeed, draw the perpendiculars ON and on to the side AB. We
obtain similar triangles: M BO ~ mBo, and NBFO ~ nBo. From
their similarity, we have: MO : mo = BO : Bo and NO : no =
BQO : Bo, and therefore MO : mo = NO : no. But mo = no, and
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hence MO = NQ, i.e. the circle described by the radius QM about
the center O is tangent to the side AB. Since its center lies on the
bigector of the angle, it is tangent to the side BC as well.

If instead of the point m on the auxiliary circle, the other intersec-
tion point  of this circle with the ray BM is taken as homaothetic to
M, then ancther center O’ of the required circle will be constructed.
Thus the problem admits two solutions.

183. Problem 3. Inio a given triangle ABC, to inscribe u rhom-
bus with a given acute angle, in such a way that one of its sides lies
on the base AB of the triangle, and two vertices on the loteral sides
AC and BC (Figure 187).

Figure 187

Discard temporarily the requirement for one of the vertices to lie
on the side BC. Then there are infinitely many rhombi satisfying the
remaining conditions. Construct one of them. For this, take on the
side AC an arbitrary point M and construct the angle, congruent to
the given one, with the vertex at the point M, and such that one of
its sides is parallel to the base AB and the other intersects the base
at some point N. On the side AB, mark a segment NP congruent
to M N, and construct the rhombus with the sides M N and NP.

Let @ be the fourth vertex of this rhombus. Taking A for the cen-
ter of homothety, construct the rhombus homothstic to the rhombus
MNPQ, and choose the homothety coefficient such that the vertex
of the new rhombus corresponding to the vertex @@ turns out to lie
on the side BC of the triangle. For this, extend the ray AQ up to
its intersection with the side BC' at some point X. This point will
be one of the vertices of the required rhombus. Drawing through X
the lines parallel to the sides of the rhombus M N PQ, we obtain the
required rhombus XY ZU.
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EXERCISES

Prove theorems:

984. If the radii of two circles rotate remaining parallel to each other,
then the lines passing through the endpoints of such radii intersect
the line of centers at a fixed point.

385. Two circles on the plane are homothetic to each other with
respect to a suitable center (even two centers, for one the homothety
coefficient is negative, and for the other positive).

Hint: The centers of homothety are the fixed intersection points
from the previous problem.

Find the geometric locus of:

886. Midpoints of all chords passing through a given point on a
circle.

38°7. Pointg dividing all chords passing through a given point on a
circle in a fixed ratio m : n.

388. Points from which the distances to the sides of a given angle
have a fixed ratio.

Construction problems

389. Through a point given in the interior of an angle, draw a line
such that its segments between the point. and the mdeﬁ of the angle
have a given ratio m : n.

390. About a given square, circumscribe a triangle similar to a given
one.

891. Find a point inside a triangle such that the three perpendiculars
dropped from this point to the sides of the tziaugle are in the given
proportion m : n : p.

392. Construct a triangle, given the angle at %he vertex, the altitude,
and the ratio in which its foot divides the base.

293. Construct a triangle, given its angles, and the sum or the dif-
ference of the base and the altitude.

394. Construct an isosceles triangle, given the angle at the verfex,
and the sum of the base with the altitude.

395. Construct a triangle, given its angles and the radius of its cir-
cumsgeribed circle.

896, Given ZAOB and g point C in its interior. On the side OB,
find a point M equidistant from OA and C.
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3297. Construct a triangle, given the ratio of its altitude to the base,
the angle at the vertex, and the median drawn to one of its lateral
sides

#98. Into & given disk segment, inscribe a square such that one of
its sides lies on the chord, and the opposite vertices on the arc.
299. Into a given triangle, ingcribe a rectangle with the given ratio

of the sides m : n, so that one of its sides lies on the base of the
triangle, and the opposite vertices on the lateral sides.

6 Geometric mean

184. Definition. The geometric mean between two segments
a and c is defined to be a third segment b such that a : b =5 : ¢
More generally, the same definition applies to any quantities of the
same denomination. When a, b, and ¢ are positive numbers, the
relationship a : b = b : ¢ can be rewritten as

3

¥ = ac, or b= +/ac.

185. Theorem. In a right triangle:

(1) the altitude dropped from the vertex of the right angle
is the geomeiric mean between two segments into which the
foot of the allitude divides the hypotenuse, and

(2) each leg is the geometric mean between the hypotenuse
and the segment of it which is adjacent to the leg.

Let AD (Figure 188) be the altitude dropped from the vertex of
the right angle A to the hypotenuse BC. It is rfﬁqun ed to prove the
following proportions:

@y BR_AD . BC_AB . BC _AC
AD D’ AB_ BD " Ac T DO

The first proportion is derived from similarity of the triangles BDA
and ADC. These triangles are similar because

L) = L4 and £2 =73

as angles with perpendicular respective sides (§80). The sides BD
and AD of ABDA form the first ratio of the required proportion.



6. Geometric mean 151

The homologous sides of AADC are AD and DC, 3 and therefore
BD:AD=AD : DC.

The second proportion is derived from similarity of the triangles
ABC and BDA. These triangles are similar because both are right,
and ZB is their common acute angle. The sides BC and AB of
ANABC form the first ratio of the required proportion. The homol-
ogous sides of ABDA are AB and BD, and therefore BC : AB =
AB: BD.

The last proportion is derived in the same manner from the sim-
ilarity of the triangles ABC and ADC.

B D C

Figure 188 Figure 189

186. Corcllary. Let A (Figure 189) be any point on a circle, de-
scribed about a diameter BC. Connecting this point by chords with
" the endpoints of the diameter we obtain a right triangle such that
its hypotenuse is the diameter, and its legs are the chords. Applying
the theorem to this triangle we arrive at the following conclusion:

The perpendicular dropped from any point of a circle to its diam-
eter is the geometric mean between the segments into which the foot
of the perpendicular divides the diameter, and the chord connecting
this point with an endpoint of the diameter is the geometric mean
between the diameter and the segment of i adjacent to the chord.

187. Problem. To construct the geometric mean between two
segments a and c.

. We give two solutions.

(1) On a line (Figure 190), mark segments AB = a and BC =¢
next to each other, and describe a semicircle on AC as the diameter.

3In order to avoid mistakes in determining which sides of gimilar triangles
are homologous to each other, it is convenient to mark angles opposite to the
sides in question of one triangle, then find the angles congruent to them in the
other triangle, and then take the sides opposite to these angles. For instance, the
sides BD and AD of ABDA are opposite to the angles 1 and 3; thess angles are
congruent to the angles 4 and 2 of AADC, which are opposite to the sides AL
and DC. Thus the sides AD and DC correspond to BD and AD respectively.
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From the point B, erect the perpendicular to AC' up to the inter-
section point D with the semicircle. The perpendicular BD is the
required’ geometric mean between AB and BC.

D a3

A B c A5
a b

o -
Ji—t-anll] o

Y

A A
Y

 }

Figure 190 . Figure 191

(2) From the endpoint A of a ray (Figure 191), mark the given
segments a and b. On the greater of them, describe a gemicircle.
From the endpeint of the smaller one, erect the perpendicular up to
the intersection point D with the semicircle, and connect D with A.
The chord AD is the required geometric mean between @ and b.

188. The Pythagorean Theorem. The previous theorems
allow one to obtain a remarkable relationship between the sides of any
right triangle. This relationship was proved by the Greek geometer
Pythagoras of Samos (who lived from about 570 B.C.to about 475
B.C.) and is named after him.

Theorem. If the sides of a right iriangle are measured
with the same unit, then the square of the length of its hy-

potenuse is equal to the sum of the squares of the lengihs
of its legs.

¥
f |

O |

fa]
Yy

Figure 192

Let ABC (Figure 192) be a right triangle, and AD the altitude
“dropped to the hypotenuse from the vertex of the right angle. Sup-
pose that the sides and the segments of the hypotenuse are measured
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by the same unit, and their lengths are expressed by the numbers
a, b, ¢, ¢ and b'* Applying the theorem of §185, we obtain the
proportions: .
a:e=c:c anda:b="5:%,

or equivalently:
ad =c? and ab =¥,

Adding these squalities, we find:
ac +ab =c*+ b2, or ald +b)=c+ .

But ¢ + ¥ = a, and therefore ¢? = 5% + 2.

This theorem is often stated in short: the square of the hypotenuse
equals the sum of the squares of the legs.

Example. Suppose that the legs measured with some linear unit
are expressed by the numbers 3 and 4. Then the hypotenuse is
expressed in the same units by a number z such that

22 =32 442 =9+ 16 = 25, and hence z = v/25 = 5.

Remark. The right triangle with the sides 3, 4, and 5 is sometimes
called Egyptian because it was known to ancient Egyptians. It is
believed they were using this triangle to construct right angles on
the land surface in the following way. A circular rope marked by 12
knots spaced equally would be stretched around three poles to form
a triangle with the sides of 3, 4, and_5 spacings. Then the angle
between the sides equal to 3 and 4 would turn out to be right. °

Yet another formulation of the Pythagorean theorem, namely the
one known to Pythagoras himself, will be given in §258.

189. Corollary. The squares of the legs have the same ratio as
the segments of the hypotenuse adjacent to them.

Indeed, from formulas in §188 we find 2 : 82 =ac 1 a¥ = : V.
Remarks. (1) The three equalities

ad =%, ab =02, a® = b + ¢,

41t is customary to denote sides of trisngles by the lowercase letters corre-
sponding to the uppercase letters which label the opposite vertices.

SRight triangles whose sides are measured by whole numbers are called
Pythagorean. Onsg can prove that the legs = and y, and the hypotenuse 2
of such triangles are expressed by the formulas: z = 2ab,y = a2 — b2,z = a2 + b7,
where @ and b are arbitrary whole numbers such that ¢ > b.
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can be supplemented by two more:
¥+ =a, and h?* =0'¢,

where h denotes the length of the altitude AD (Figure 192). The
third of the equalities, as we have seen, is a consequence of the first
two and of the fourth, so that only four of the five equalities are
independent. As a result, given two of the six numbers a,b, ¢, ¥, ¢
and h, we can compute the remaining four. For example, suppose we

are given the segments of the hypotenuse b = 5 and ¢ = 7. Then

a=F+c =12, c=Vad =V12-7 = /84 = 2V/21,
b= Vab =125 =60, h =V =+5-7 =35

(2) Later on we will often say: “the square of a segment” instead
of “the square of the number expressing the length of the segment,”
or “the product of segments” instead of “the product of numbers
expressing the lengths of the segments.” We will assume therefore
that all segments have been measured using the same unit of length.

190. Theorem. In every triangle, the square of a side
opposite to an acule angle iz equal to the sum of the squares
of the two other sides minus twice the product of (any) one
of these two sides and the segment of this side belween the
vertex of the acute angle and the foot of the altitude drawn
to this side.

Let BC be the side of AABC (Figures 193 and 194), opposite
to the acute angle A, and BD the altitude dropped to another side,
e.g. AC, (or to its extension}. It is required to prove that

BC? = AB? + AC® —2AC - AD,

or, using the notation of the segments by .«.»mgle lowercase letters as
shown on Figures 193 or 194, that

a® = b+ ¢ — 2bc.
From the right triangle BDC, we have:

a’ = h? 4+ (a) ()

2

“Let us compute each of the squares h? and (/)*. From the right

triangle BAD, we find: A% = ¢?—(¢’)2. On the other hand, ¢’ = b—¢/
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(Figure 193) or a’ = ¢ — b (Figure 194). In both cases we obtain the
same expression for (a/)*:

(@) =(b—c)?=(d —b®=b—2b + ()%
Now the equality (%) can be rewritten as

a=c? — (Y +0%—2bd + ()2 =& + b2 — 2ic.

B B
c h a c (v} h
A D C A c D
» c’ o b a’
- b~ » o T

Figure 193 Figurg 194

191. Theorem. In an obtuse triangle, the square of the
side opposite to the obituse angle is equal to the sum of
the squares of the other two sides plus twice the product
of (any) one of these two sides and the segment on the ex-
tension of this side between the wvertex of the obtuse angle
and the fool of the altitude drawn to this side.

Let AB be the side of AABC (Figure 194), opposite to the obtuse
angle C, and BD the altitude dropped to the extension of another
side, e.g. AC. Tt is required to prove that

AB? = AC® + BC? +2AC - CD,
or, using the abbreviated notation shown in Figure 194, that
¢? = a® + b* + 2ba’.
From the right triangles ABD and CBD), we find:

62=h2+(€f)2 =a2—(a’)2«%~(a’+b)g:
a? — ()2 + (@) + 200’ + b2 = a® + b% + 2bd.
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192. Corollary. From the last three theorems, we conclude,
that the square of a side of a triangle is equal to, greater than, or
smaller than the sum of the squares of the other two sides, depending
on whether the angle opposite o this side is right, acute, or obiuse.

Furthermore, this implies the converse statement: an angle of o
triangle turns out to be righi, acute or obtuse, depending on whether
the square of the opposite side is egual to, greater than, or smaller
than the sum of the squares of the other two gides.

193. Theorem. The sum of the squares of the diagonals
of a parallelogram is equal to the sum of the squares of its
sides (Figure 195).

A £e? D F

Figure 195

From the vertices B and C of a parallelogram ABCD, drop the
perpendiculars BE and C'F to the base AD. Then from the triangles
ABD and ACD, we find:

BD? = AB? + AD? —2AD-AE, AC?= AD?+(CD?+2AD-DF.

The right triangles ABE and DCF are congruent, since they have
congruent hypotenuses and congruent acute angles, and hence AFE =
DF. Having noticed this, add the two equalities found earlier. The

- summands ~2AD - AE and +2AD - DF cancel out, and we get:

BD2. AC? — AB2+AD? - AD?4-CD? = AB2.BC? 1+ CD?+ AD2,

194. We return to studying gecrnetric means in a disk.

Theorem. If through a poinit (M, Figure 196), taken inside
a disk, o chord (AB) and a diameter (CD) are drawn, then
the product of the segments of the chord (AM - M B) is equal
to the product of the segments of the diameter (CM - M D).

Drawing two auxiliary chords AC and BD, we obtain two tri-
angles AMC and DM B {shaded in Figure 196) which are sirnilar,
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since their angles A and D are congruent as inscribed intercepting
the same arc BC, and the angles B and D are congruent as inscribed
intercepting the same arc AD. From similarity. of the triangles we
derive: AM : MD = CM : M B, or equivalently

AM -MB =CM - MD.

Figure 1%6 Figure 197

195. Corollaries. (1) For all chords (AB, EF, KL, Figure 196)
passing through the same point (M) inside a disk, the product of the
segments of each chord is constant, i.e. it is the same for all such
chords, since for each chord it is equal to the product of the segments
of the diameter. ' —

(2) The geometric mean between the segments (AM and M B) of
a chord (AB), passing through a point (M) given inside a disk, is
the segment (EM or MF) of the chord (EF) perpendicular to the
diameter (CD), at the given point, because the chord perpendicular
to the diameter is bisected by it, and hence

EM=MF=vAM  -MB.

196. Theorem. The tangent (MC, Figure 197} from a point
(M) taken outside a disk is the geomeiric mean between a
secant (M A), drawn through the same point, and the exterior
segment of the secant (M B).

Draw the auxiliary chords AC and BC, and consider two triangles

MCA and MCB (shaded in Figure 197}. They are similar because
. ZM is their common angle, and ZMCEB = ZBAC since each of them
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is measured by a half of the arc BC. Taking the sides M A and M
in AMCA, and the homologous sides MC and MB in AMCB, we
obtain the proportion: MA : MC = MC : M B and conclude, that

the tangent M is the geometric mean between the segments A A
and AM B of the secant. |

197. Corollaries. (1) The product of a secant (M A, Figure
197), passing through a point (M) oulside a disk, and the exterior
part of the secant (M B) is equal to the square of the tangent (M(C)
drawn from the same point, i.¢.:

MA -MB=MC2

(2} For all secants (MA,MD,ME, Figure 197), drawn from u
point (M} given outside a disk, the product of each secant and the
exterior segment of i, is constant, i.e. the product is the same for
all such secants, because for each secant this product is equal to the
square M(? of the tangent drawn from the point M.

198. Theorem. The p,mduct of the diagonals of an in-
scribed quadrilateral is equal to the sum of the products of
its opposite sides.

This propoesition is called Ptolemy’s theorem after a Greck
astronomer Cloudius Ptolemy (85 — 165 A.D.} who discovered it.

Figure 198 Figure 199

Let AC and BD be the diagonals of an inscribed quadrilateral
ABCD (Figure 198). Tt is required to prove that

AC-BD=AB-CD+ BC- AD.
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Construct the angle BAFE congruent to ZDAC, and let E be the
intersection point of the side AF of this angle with the diagonal BD.
The triangles ABE and ADC (shaded in Figure 198) are similar,
since their angles B and (' are congruent (as inscribed intercept-
ing the same arc AD), and the angles at the common vertex A are
congruent by construction. From the similarity, we find:

AB:AC=BE:(CD, ie. AC-BE=AEB-CD.

Consider now another pair of triangles, namely AABC and AAED
(shaded in Figure 199). They are similar, since their angles BAC and
DAP sre congruent (as supplementing to ZBAD the angles congru-
ent by construction), and the angles ACB and ADD are congxueni:
as inscribed intercepting the same angle AE. We obtain:

BC . ED=AC: AD, ie. AC-ED=BC AD.
Sumnming the two equality, we find:

AC(BE + ED) = AB-CD + BC - AD, where BE + ED = BD..

EXERCISES

Prove theorems:

400. If a disgonal divides & trapezoid into two similar triangles, then
this diagonal is the geometric mean between the bases.

401.* If two disks are tangent externally, then the segment of an ex-
ternal common tangent between the tangency points is the geometric
mean between the diameters of the disks.

402. If a square is inscribed into a right triangle in such a way
that one side of the square lies on the hypotenuse, then this side
is the geometric mean between the two remaining segments of the
hypotenuse.

403.* If AB and CD are perpendicular chords in a circle of radius
R, then AC? + BD? = 4R?.

404. If two circles are concentric, then the surn of the squares of
the distances from any point of one of them to the endpoints of any
diameter of the other, is a fixed quantity.

Hint: See §193.

405. If two segments AB and CD (or the extensions of both seg-
ments) intersect at a point £, such that AF - EB = CE - ED, then
the points 4, B, C, D lie on the same circle.

Hint: This is the theorem converse to that of §195 (or §197).
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406.* In every AABC, the bisector AD satisfies AD? = AB- AC —
DE-DC.

Hint: Extend the bisector to its intersection F with the circum-
scribed circle, and prove that AABD is similar to AAEC.

4077 In every triangle, the ratic of the sum of the squares of all
medians to the sum of the squares of all sides is equal to 5/4.

408. If an isosceles trapezoid has bases ¢ and b, lateral sides ¢, and
diagonals d, then ab + ¢ = d2.

409. The diameter AB of a circle is extended past B, and at a point
(' on this extension CD | AB is erected. If an arbitrary point M
of this perpendicular is connected with A, and the other intersection
point of AM with the circle is denoted A, then AM - AA’ is a fixed
quantity, i.e. it does not depend on the choice of M.

410.* Given a circle O and two points A and B. Through these
points, several circles are drawn such that each of them intersects
with or is tangent to the circle O. Prove that the chords connecting
the intersection points of each of these circles, as well as the tangents
at the points of tangency with the circle O, intersect (when extended)
at one point lying on the extension of AB.

411. Using the result of the previous problem, find a construction of
the circle passing through two given points and tangent to a given
circle.

Find the geometric locus of:

412. Points for which the sum of the squares of the distances to two
given points is a fixed quantity.

Hint: See §193.

413. Points for which the difference of the squares of the distances
from two given points is a fixed quantity.

Computation problems

414. Compute the legs of a right triangle if the altitude dropped
from the vertex of the right angle divides the hypotenuse into two
segments m and n.

415. Compute the legs of a right triangle if a point on the hypotenuse
equidistant from the legs divides the hypotenuse into segments 15 and
20 cm long.

416. The centers of three pairwise tangent circles are vertices of a
right triangle. Compute the smallest of the three radii if the other
two are 6 and 4 cm.
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417. From a point at a distance a from a circle, a tangent of length
2a is drawn. Compute the radius of the circle.

418. In the triangle ABC, the sides measure AB =7, BC = 15, and
AC = 10 units. Determine if the angle A is acute, right, or obtuse,
and compute the a,ltitude dropped from the vertex B.

419. Compute the radius of a circle which is tangent to two smaller
sides of a triangle and whose center lies on the greatest side, if the
sides are 10, 24 and 26 units long.

420. Through a point, which is 7 ¢m away from the center of a circle
of radius 11 e¢m, a chord of length 18 em is drawn. Compute the
segments into which the point divides the chord.

421. From a point outside a disk, s tangent a and a secant are drawn.
Compute the length of the secant if the ratio of its part outside the
disk to the part inside the disk is equal to m : n.

422. Compute the base of an isosceles triangle with a lateral side 14
units and the median to this side 11 units.
Hint: Apply the theorem of §193.

423.* Express medians of a triangle in terms of its sides.
42/.% BExpress altitudes of a triangle in terms of its sides.
425.* Express bisectors of a triangle in terms of its sides.

426.7 A vertex of a triangle liss on the circle passing through the
midpoints of the adjacent sides and the barycenter. Compute the
median drawn from this vertex if the opposite side has length e.

4£27.* In a trisngle, the medians drawn to two sides of 6 and 8 cm
long are perpendicular. Compute the third side.

7 Trigonometric functions

199. Trigonometric functions of acute angles. Let « be any
acute angle (Figure 200). On one of its sides, take an arbitrary point
M and drop the perpendicular M N from this point to the other side
of the angle. Then we obtain a right triangle OMN. Take pairwise
ratios of the sides of this triangle, namely:

MN : OM, ie. the ratio of the leg opposite to the angle «, 1o
the hypotenugse,

ON : OM, i.e. the ratio of the leg adjacent to the angle «, to
the hypotenuse,

MN : ON, i.e. the ratioc of the leg opposite to the angle ¢, to
the leg adjacent to it,
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and the ratios reciprocal to them:

OM OM ON
MN' ON' MN’

The magnitude of each of these ratios depends neither
on the position of the point M on the side of the angle, nor
on the side of the angle the point M is taken on.

Indeed, if instead of the point M we take another point M’ on
the same side of the angle (or a point M” on the other side of it), and
drop the perpendiculars M'N’ (respectively M”N") to the opposite
side, then the right triangles thus formed: AOM'N’ and AOM"N"
will be similar to the triangle OM N, because « is their common
acute angle. From the proportionality of homologous sides of similar
triangles, we conclude:

MN M'N' M"N" ON ON' _ ON"

ON ON'  ON"’ MN M'N'  M"N"™
Therefore, the ratios in guestion do not change their values when
the point M changes its pdsition on one or the other gide of the
angle. Obviously, they do not change when the angle o is replaced
by another angle congruent to it, but of course, they do change when
the measure of the angle changes.

O N N’ M

Figqure 200

Thus, to acute angles of every given measure, there cor-
respond quite definite values of each of these raiios, and we
can therefore say that each of these ratios is a function of the angle
only, and characterizes its magnifudea.

All the sbove ratios are called trigonometric functions of the
angle o, Out of the six ratios, the following four are used most often:
~ the ratio of the leg opposite to the angle ¢, to the hypotenuse is
called the sine of the angle o and is denoted sin ¢;
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the ratio of the leg adjacent to the angle ¢, to the hypotenuse is
called the cosine of the angle a and is denoted cos a;

the ratio of the leg opposite to the angle «; to the leg adjacent
to it is called the tangent of the angle o and is denoted tan «;

the ratio of the adjacent leg to the opposite leg (i.e. the ratio
reciprocal to tana) ig called the cotangent of the angle o and is
denoted cot .

Since each of the legs is smaller than the hypotenuse, the sine
and cosine of any acute angle is a positive number smaller than 1,
and since one of the legs can be greater, or smaller than the other
leg, or equal to it, then the tangent and cotangent can be expressed
by numbers greater than 1, smaller than 1, or equal to 1.

The remaining two ratios, namely the reciprocals of cosine and
sine, are called regpectively the secant and cosecant of the angle
a, and are denoted respectively sec o and esca.

200. Constructing angles with given values of a trigono-
metric function.

(1) Suppose it is required to construct an angle whose sine is equal
to 3/4. For this, one needs to construct a right triangle such that
the ratio of one of its legs to the hypotenuse is equal to 3/4, and take
the angle opposite to this leg. To constiruct such a triangle, take any
small segment and mark the segment AB (Figure 201) congruent to
4 such segments. Then construct & semicircle on AB as a diameter,
and draw an arc, of radius congruent to 3/4 of AB, centered at
the point B. Let C be the intersection point of this arc with the
semicircle. Connecting ¢ with A and B we obtain a right triangle
whose angle A will have the sine equal to 3/4.

C

Figure 201

(2) Construct an angle x satisfying the equation: cosx = 0.7.
The problem is solved the same way as the previous one. Take the
segment congruent to 10 arbitrary units for the hypotenuse AB (Fig-
ure 201), and congruent to 7 such units for AC. Then the angle A
adjacent to this leg will be the required one.
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(3) Construct an angle x such that tanz = 3/2. For this, one
needs to construct a right triangle such that one of its legs is 3/2
times greater than the other. Draw a right angle (Figure 202), and
mark a segment AB of arbitrary length on one of its sides, and the
segment AC congruent to %AB on the other. Connecting the points
B and C, we obtain the angle B whose tangent is equal to 3/2.

C

Figure 202

The same construction can be applied when the cotangent of the
angle = is given, but the required angle in this case will be the one
adjacent to the leg AC. ?

201. Behavior of trigonometric functions. It is convenient
to describe the behavior of sine and cosine as the angle varies, assum-
ing that the length of the hypotenuse remains fixed and equal to a
unit of length, and only the legs vary. Taking the radius OA (Figure
203) equal to an arbitrary unit of length, describe a quarter-circle
AM, and take any central angle AOB = «. Dropping from B the
perpendicular BC to the radius OA, we have:

) BC BC
sina = GBE= 1 = length of B(,
¢ OC
COSQ = mm = —— = length of OC.

Imagine now that the radius (JB rotates about the center O in the
direction pointed out by the arrow, starting from the position OA
and finishing in the posifion OM. Then the angle o will increase
from 0° to 90°, passing through the values ZAOB, LAOB', ZAQB",
etc. shown in Figure 203. In the process of rotation the length of the
leg BC opposite to the angle ¢, will increase from 0 (for o = 0°) to
1 (for @ = 90°), and the length of the leg OC adjacent to the angle
«, will decrease from 1 (for @ = 0°) to 0 (for a = 90°). Thus, when
the angle o increases from (° to 90°, its sine increases from -
0 to 1, and its cosine decreases from 1 to 0.
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Let us examine now the behavior of the tangent. Since the tan-
gent is the ratio of the opposite leg to the adjacent leg, it is conve-
nient to assume that the adjacent leg remains fixed and congruent to
a unit of length, and the opposite leg varies with the angle. Take the
segment QA congruent to a unit of length (Figure 204) for the fixed
leg of the right triangle AOB, and start changing the acute angle
AOB = a. By definition,

AB AB _

5:4* = T = Igllgth of AB.

tano =

NN/

a o -
o cr c C A o A

Pigure 203 Figure 204

Imagine that the point B moves along the ray AN starting from
the position A and going upward farther and farther, passing through
the positions B/, B”, etc. Then, as it is clear from Figure 204, both
the angle o and its tangent will increase. When the point B coincides
with A, the angle @ = 0°, and the tangent is also equal to 0. When
the point B moves higher and higher, the angle o becomes closer
and closer to 90°, and the value of the tangent becomes greater and
greater, exceeding any fixed number (i.e. grows indefinitely). In
such cases one says that & function increases (or grows) to infinity
(and expresses “infinity” by the symbol oo). Thus, when the angle
increases from 0° to 90°, its tangent increases from U to .

From the definition of the cotangent as the quantity reciprocal to
the tangent (i.e. cotz = 1/tanz), it follows that when the tangent
increases from 0 to o0, the cotangent decreases from oo to 0.

202. Trigonometric relationships in right triangles. We
have defined trigonometric functions of acute angles as ratios of sides
of right triangles asscciated with these angles. Vice versa, one can
use the values of trigonemetric functions in order to express metric
relationships in right triangles. '
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(1) From a right triangle ABC (Figure 205), we find: b/a =
sin B = cosC, ¢/a = cos B = sin C, and therefore

b=asinB =acosC, c=uacosB =asin(,

i.e. a leg of a right triangle is equal to the product of the hypotenuse
with the sine of the angle opposite to the leg, or with the cosine of
the angle adjacent to it.

(2) From the same triangle, we find: b/¢c = tan B = cot C and
¢/b = cot B = tanC, and therefore

b=ctanB =ccot(C, c=beot B =btanC,

i.e. aleg of a right triangle is equal to the product of the other leg
with the tangent of the angle opposite to the fc}rmer leg, or with the
cotangent of the angle adjacent to il.

Notice that ZB = 90° — Z(C'. It follows therefore that for any
angle o
3

cos o = sin{90° — &), sina = ¢os(90° — a),
tan(90° — o) = cot a, cot(90° — @) =tana.

According to the Pythagorean theorem, we have a2 = b + ¢,
Using this we arrive at the following fundamental identity relating
the sine and cosine functions: the squares of the sine and cosine
of the same angle add up to one:

sin” o 4+ cos’ @ = 1 for any angle «.

203. Some special values of trigonometric functions. Con-
sider the right triangle ABC {Figure 206) such that its acute an-
gle B = 45%. Then the other acute angle of this triangle is also
equal to 45°, i.e. the right friangle is isosceles: & = c¢. Therefore

2 = b + ¢ = 2%, and hence #/a% = 1/2, i.e. b/a = 1/V2.
Besides, b/c = ¢/b = 1. Thus

1
sin 45° = cos45° = —, tand5” = cot45° = 1.

\/ia

_ ®According to §148, the hypotenuse a of an isosceles right triangle is incom-
mensurable with its leg b. Since a/b = \/§, we conclude that the number /2 is
irrational.
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Consider now the right triangle ABC (Figure 207) such that its
acute angle B = 30°. According to the result of §81, the leg opposite
to this angle is congruent to a half of the hypotenuse. Thus

sin 30° = cos 60)° = 3

Now it follows from the Pythagorean theorem that

cos 30° = sin 60° \Il— 1/1—— \/7 "/_

Finally, since tan B =b: ¢ = (1/2)a: (v/3/ 2)(1 we have:

1 /3 1 - |
tan 30° = cot 60° = = : -~ = — tan60” = cot 30° = V/3.
2° 2 3
c c
[
45°
a b b 2b 60°
b
o 45° 30°
B c A B b A B A
Figure 205 Figurs 206 _ Figure 207

204. Trigonometric functions of obtuse angles. Definitions
of trigonometric functions of acute angles can be successfully gener-
alized to arbitrary angles using the concept of the number line and
negative numbers, discussed in §153.

Consider an arbitrary central angle BOA = « (see Figure 208,
where the angle « is shown obtuse)} formed by a radius OB with the
fixed radius OA. To define cos ax, we fivgt extend the radius OA to the
infinite straight line, and identify the latter with the number line by
taking the center O and the point A to represent the numbers 0 and
1 respectively. Then we drop the perpendicular from the endpoint
of the radius B to the line OA. On the number line OA, the foot
of this perpendicular represents a real number which is taken for the
definition of the cosine of the angle «. To define sin o, we rotate
the number line OA counter-clockwise through the angle of 907, and
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thus obtain another number line, OP, perpendicular to OA. The
foot of the perpendicular dropped from the point B to the line OP
represents the number sina. Translating the line QP we obtain a
third number line AQ tangent to the circle at the point A. Then the
intersection point of the extended line OB marks on the number line
AQ the value of tan a. Finally, seca, csca, and cot «, are defined
as the reciprocals of cos o, sina, and tan o respectively.

AP i e
) 1

Y

tan o.

Figure 208

Some properties of trigonometric functions are obvious from Fig-
ure 208. For example, when the angle « is obtuse, the values cos «
and tan o are negative, and sina positive. Moreover:

sina = sin(180° — ), cosa = — cos(180° — o),

tana = —tan(180° — «), cot o = — cot(180° — a).

205. The law of cosines. The notion of the cosine function for
arbitrary angles allows one to unify the results of §190 and §191 and
express the square of one side of a triangle in terms of the opposite
angle and the other two sides, in & single formula known as the law
of cosines.

Theorem. The square of one side (c, Figure 209) of every
triangle (ABC) s equal to the sum of the squares of the other
two sides (o and b) minus twice the product of the latter two
sides with the cosine of the angle (C) opposite to the former
side:

2 =a?+ b —2abcosC.
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Indeed, according to the result of §190 or §191, when the angle
C is acute or obtuse, we have respectively:

2=a?41?—2¢-CD, or 2=a>+b"+20-CD, (%)

where CD is the distance from the vertex C to the perpendicular BD
dropped from the vertex B to the opposite side. According to the
definition of the number cos ¢ (which ig positive when ZC iy acute,
and negative when ZC is obtuse), CD = bcosC in the first case,
sud CD = —beos C in the second. Substituting this value of C'D
into the corresponding equation (2*), we obtain the same resulting
formula in both cases: ¢? = a* + b? — 2abcos C as required. Finally,
when the angle C is right, we have cos C = cos90° = 0. Therefore
the law of cosines turns in this case into the equality ¢ = a” + b2,
which holds true due to the Pythagorean theorem. Thus the law of
cosines holds true for any triangle.

B B

¢ D A p| c\™\ A

< beosC_ - - b -
. b - - -bcosC
Figure 209 Figure 210
EXERCISES

428. Compute the values of the sine and cosine of the angles 90°,
120°, 135°, 150°, and 180°.

429. For which of the angles 0°, 90°, and 180° are the values of the
functions tan and cot defined?

480. Compute the values of the tangent and cotangent of 120°, 135°,
and 150°.

431. Prove that sin(a + 90°) = cos a, cos{a + 90°) = sina.

432. Construct the angles o such that: (a) cosa =2/3, (b) sina =
—1/4, (¢) tana = 5/2, (d) cot o = —T.

483. Compute two sides of a triangle, if the third side is a, and the
angles adjacent to it are 45° and 15°.
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434. Is the triangle with the sides 3, 7, and 8 ¢m acute, right, or
obtuse? Compute the angle opposite to the middle side.

485. Compute the side AB of AABC if AC =7, BC = 5, and
LB =120°.

436.* Compute the sine and cosine of: (a) 15°, (b) 22°30'.

- 487 Compute cos 18°.

Hint: The bisector drawn to a lateral side of an isosceles triangle
with the angle 36° at the vertex cuts off a triangle similar to the
original one.

438.* Prove that if from the endpoints of a diameter of a circle, two
intersecting chords are drawn, then the sum of the products of each
chord and the segment of it from the endpoint of the diameter to the
intersection point is a constant quantity.

439. Prove that a side a of a triangle is expressed through the op-
posite angle and the radius B of the circumscribed circle as a =
2Rsin A.

440. Derive the law of sines: in every triangle, sides are propor-
tional to the sines of the opposite angles.

441.* T'wo right triangles lie on the opposite sides of their common
hypotenuse h. Express the distance between the vertices of the right
angles through A and the sines of acute angles of the triangles.
Hint: Apply Ptolemy’s theorem.
442. Prove the addition law for the gine function:

sin{a + ) = sinccos f + cosasin f3.
Hint: Apply the result of the previous problem.
448.* On a given segment AB, a point M ig chosen, and two con-
gruent circles are drawn: through A and M, and A{ and B. Find
the geometric locus of the second {i.e. other than M) intersection
points of such circles.

8 Applications of algebra to geometry

206. The golden ratio. One says that a segment is divided in
the extreme and mean ratio if the greater part is the geometric
mean between the smaller part and the whole segment. In other
words, the ratio of the whole segment to the greater part must be
equal to the ratio of the greater part to the smaller one. ¥ We will
solve here the following construction problem:

"This ratio is known under many names, such as: the golden ratio, golden
section, golden mean, and also the divine proportion.
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Problem. To divide a segment in the extreme and mean ratio.

The problem will be solved if we find one of the two required
parts, e.g. the greater one. Let us assume first that the problem in
question is not about the congtruction of this part, but only about
the computation of its length. Then the problem can be solved al-
gebraically. Namely, if a denotes the length of the whole segment,
and z the length of the greater required part, then the length of the
other part is ¢ — z, and the requirement of the problem is expressed
by the equation:

z? =ale — ), or 2% +ax — a® = 0.

Solving this quadratic equation we find two solutions:

a a2 9 a [ 7aN2 9
B=-g+ (5) tah Tm=og - (5) +at.

We discard the second solution as negative, and simplify the first

e
a? , a _ [5a® a Vs a Vb—1
T =gt = — = - = a.
4 2 4 2 2 2 2

Thus the problem has a unique solution. If we manage to construct
a segment whose length is given by this formula, then our original
problem will be solved. Thus the problem reduces to constructing o
given formula.

D

J

|
A cC G B

Figure 211

In fact it is more convenient to construct this formula in the form
it had before the simplification. Congidering the expression

a 2
ha Z.
(2) +as

we notice that it represents the length of the hypotenuse of a right
triangle whose legs are a/2 and a. Constructing such a triangle and
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then subtracting a/2 from its hypotenuse, we find the segment z;.
Therefore the construction can be executed as follows.

Bisect the given segment AB = a (Figure 211) at the point C.
From the endpoint B, erect the perpendicular and mark on it the
segment BD = BC. Connecting A and D we obtain a right triangle
ABD whose legs are AB = a and BD = a/2. Therefore its hy-
potenuse AD = \/a? + (a/2)2. To subtract a/2 from it, describe an
arc BE of radius BD = a/2 centered at the point D. Then the re-
maining segment AF of the hypotenuse will be equal to z1. Marking
on AB the segment AG = AFE, we obtain a point G, which divides
the segment AB in the extreme and mean ratio.

207. The algebraic method of solving construction prob-
lems. We have solved the previous problem by way of applying al-
gebra to geometry. This is a general method which can be described
as follows. Firstly one determines which line segment is required in
order to solve the problem, denotes known segments by a, b, ¢, ..., and
the required segment by x, and expresses relationships between these
quantities in the form of an a]gebraic equation, using requirements of
the problem and known theorems. Next, applying the methods of al-
gebra, one golves the equation, and then siudies the solution formuls
thus found, i.e. determines for which data the solution exists, and
how many solutions there are. Finally, one constructs the solution
formula, i.e. describes a construction by straightedge and compass
of a segment whose length is expressed by this formula.

Thus the algebraic method of solving geometric construction
problems, generally speaking, cousists of four steps: (i) deriving an
equation, (ii) solving it, (iii) studying the solution formula, (ivj con-
structing it.

Sometimes a problem reduces to finding several line segments.
Then one denotes their lengths by several letters z,y,2,..., and
secks a system of as many equations as there are unknowns.

208. Construction of elementary formulas. Suppose that
solving a construction problem by the algebraic method we arrive
at a solution formula which expresses a required length z through
given lengths a, b, ¢, ... using only the arithmetic operations of addi-
tion, subtraction, multiplication and division, and the operation of
extracting square roots. We will show here, how to construct such a
formula by straightedge and compass.

First, one of the given segments, e.g. a, can be taken for the unit
of length. We may assume therefore that all segments are represented
by numbers. Respectively, the task of constructing the formulas
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expressing the required segment through given segments is reduced to
the problem of constructing the required number z expressed through
the given numbers ¢ = 1,b,c¢,... by means of the four arithmetic
operations and by extracting square roots. Thus it guffices to show
how to obtain the regult of these five elementary operations with
given numbers, uging straightedge and compass.

(1) Addition and subtraction of numbers represented by given
segments can be easily done by marking the segments on the number
line (using compass).
(2) Multiplication and division can be done on the basis of Thales’
theorem by intersecting sides of an angle by parallel lines, as shown
in Figure 212. Namely, the proportions
r c z b
—=—,and - = -
b 1 1 ¢

are equivalent to x = be and z = b/c respectively.

(3} To extract the square root 2 of a given number b, it suffices
to construct the geometric mean between b and 1 ag shown in Figure
213.

x=Vb

I b

Figure 212 Figure 213

Thus, any algebraic expressions involving ornly arithmetic
operofions with and square roots of given numbers can be
constructed by straightedge and compass.

Remark. Conversely, as we will see in §213, using straight-
edge and compass one can construct only those algebraic expressions
which can be obtained from given numbers by a finite succession of
arithmetic operations and extraction of square roots.

EXERCISES
1
444. Construct the angle 15d.
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445. Construct an isosceles triangle such that the bisector of an angle
adjacent to the base cuts off a triangle similar to it.

446. Given three segments a, b, and ¢, construct a fourth segment z
such that z : ¢ = a? : b2

447. Construct segments expressed by the formulas: (a) 2z = abe/de,
(b) z = va® + be

448. Given the base ¢ and the altitude h of an acute triangle, com-
pute the side z of the square inscribed into the triangle, i.e. such
that one side of the square lies on the base, and the opposite vertices
on the lateral sides of the triangle.

449. A common tangent is drawn to two disks which have the dis-
tance d between the centers, and the radii R and r. Compute the
pogsition of the intersection point of this tangent with the line of
centers, when the point lies: (i} to one side of both centers, or (ii)
between them.

450. Prove that if two medians in a triangle are congruent, then the
triangle is isosceles.

Hint: Use the algebraic method and §193.

451. In the exterior of a given disk, find & point such that the tangent
from this point to the disk is equal to a half of the secant drawn from
this point through the center.

Hint: Apply the algebraic method.

452. Through a given point outside a given disk, construct a secant
that is divided by the circle in a given ratio.

453. Inscribe s circle into a given sector.

454.7% Consgtruct a triangle given its altitudes.

Hint: First derive from similarity of triangles that the altitudes
he, hp, he are m'versel'y proportional to the respective sides a, b, ¢, i.e.
that kot hp:he=1L:3:2

e

9 Coordinates

209. Cartesian coordinates. We saw in §153 how to identify
points of a straight line with real numbers. It turns out that points
of a plane can similarly be identified with ordered pairs of real num-
bers. One important way of doing this is to introduce Cartesian
coordinates.® To construct a Cartesian coordinate system on

3 8The term Cartesian originates from Cartesius, the Latinized name of René
Descartes (1698 — 1650), the French philosopher who introduced inte geometry
the systematic use of algebra.
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the plane, pick a point. O (Figure 214) and two perpendicular lines
passing through it. Then pick a unit of length, and mark segments
OA and OB of unit length on the first and second line respectively.
The point O is called the origin of the coordinate system, and the
infinite straight lines OA and OB the 1st and the 2nd coordinate
axes respectively.

Next, identify each of the coordinate axes with the mumber line
by choosing the origin to represent the number 0 on each of them,
and the point A (respectively B} to represent the number 1 on the
1st (respectively the 2nd) axis.

NM
Po —————————————————— -1 2
i s}
M ol a4 X
-3 -2 =1 1 2
-1
Figure 214

Now, given a coordinate system, to any point P on the plane, we
associate an ordered pair (z,y) of real numbers called respectively
the 1st and the 2nd coordinate of P. Namely, we draw through P
two lines PN and PM, parallel to the coordinate axes OA and OF8
regspectively. The intersection point M (respectively N) of the line
OM (respectively ON) with the 1st (respectively the 2nd) coordi-
nate axis represents on this axis a real number, which we take for
z (respectively y). For instance, the point Pin Figure 214 has the
coordinates = —3, and y = 2. Vice versa, the point P can be re-
covered from its coordinates (z,y) unambiguously. Namely, mark on
the 1st and 2nd coordinate axes the points representing the numbers
z and y respectively, and erect perpendiculars to the axes from these
points. Obviously, P is the intersection point of these perpendicu-
lars. Therefore we have established a correspondence between points
of the plane and ordered pairs of their coordinates. Clearly, the co-
ordinates in this construction can be arbitrary real numbers, and we
will write P(z,y) for a point P whose Ist and 2nd coordinates are
given by the numbers z and y respectively (e.g. P(—3,2) is the point
denoted P which has the coordinates z = —3 and y = 2).
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210. The coordinate distance formula.,

Problem. To compute the length of the segment befween fwe
points P(z,y) and F’(2',y) with given Cartesian coordinates (Figure
215).

7
O

L o 4
\ bsinC cC a B

Figure 215 Figure 216

The lines PQ and P'Q, parallel to the 1st and 2nd coordinate
axes respectively, are perpendicular {since the coordinate axes are),
and therefore intersect at some point ¢}. Suppose that the segment
PP’ is not parallel to either of the coordinate axes. Then PF’ is the
hypotenuse of the right triangle PQP’. Applying the Pythagorean
theorem, we find the distance between P(z,y) and P'(z/,y):

PP = \/a=2P + (=¥

In the special case when the segment FF’ is parallel to one of the
coordinate axes, the right triangle PP’ degenerates into this seg-
ment, but it is easy to check that the above distance formula remains
true (because in this case either x = &/, or y = ¢/).

211. The method of coordinates. One can successfully use
coordinates to solve geometric problems. Here is an example.

Problem. 1o re-prove the law of cosines using coordinates. -

In AABC, let &, b, and ¢ be the sides opposite to the vertices A,
B, and C respectively. It is required to prove that

2 = a4 5% —2abcosC.

Pick a Cartesian coordinate system in such a way that the origin
is the vertex C {Figure 216}, the positive ray of the 1st coordinate

~axis contains the side CB, and the positive ray of the 2nd coordinate

axis lies on the same side of the line CB as the vertex A. Then the
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vertices C, B, and A have coordinates respectively: (0,0}, {a,0)
(by construction), and (bcosC,bsinC) (by the definition of sine
and cosine). The distance ¢ between the vertices A and B can be

computed using the coordinate distance formuls of §210 with {x,y) =
(beos C,bsin '} and (2',y') = (a,0), i.e.

& = (beos C—a)*+(bsin C)* = b? cos® C—2ab cos C+a’+b* sin® C.

The first and the last summands here add up to b2, since cos?C +
sin? (¢ = 1. We obtain therefore ¢ = a?+ 52 — 2abcos C as required.

212. Geometric loci and their equations. The geometric lo-
cus of all points, whose coordinates {z,y] satisfy a certain equation,
is said to be described by this equation, and is called the solution
locus of it. Many familiar geometric loci can be described in coor-
dinates as solution loci of suitable equations. We discuss here the
equations of straight lines and circles.

Problem. To find the geometric locus of points P(z,y) whose
coordinales satisfy the equation ax + By =y, where a, 3, and v are

given numbers.
_ i
V-px+\q:\
L INe
?’M ? \
X o i _

r

x=r x=0

Figure 217

When o = f# = 0, the left hand side of the equation is equal to
0, and therefore the geometric locus in question containg all points
of the plane when v = 0, and contains no points when v # 0. So,
let us assume that at least one of the coefficients «, [ is non-zero.
In this case we claim that the points whese coerdinates {z,y) satisfy
the equation ax + Py =y form a straight line. To see this, we divide
the equation by f, agsuming that 8 # 0, and obtain a new equation
y = px +q, where p = —a/f, and ¢q = «y/f. Of course, multiplication
or division of an equation by a non-zero number does not change the
locus of points whose coordinates satisfy the equation. Thus we need
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to show that the locus of solutions of the new equation is a straight
line.

Consider first the case when g = 0. Points satisfying the equation
y = px are exactly the points with coordinates (z,y) of the form
(z,px). The locus of such points contains exactly one point for each
value of z and includes: the origin O (Figure 217) whose coordinates
are (z,y) = (0,0); the point P with coordinates (z,y) = (1,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>